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PREFACE.

AvrceBraA is justly considered one of the principal
foundations of all sound mathematical knowledge. Since
the investigations of modern geometers have given to
analytical investigations that predominance which they
now hold over the synthetical methods adopted by ancient
mathematicians, its importance has proportionably in-
creased. Every person, therefore, who wishes to obtain
a thorough knowledge of the higher mathematics, must
commence by studying and fully mastering the principles
of Algebra.

It is not to such persons alone that it is important.
The babits of investigation to which it leads ; the powers
of analysis which it confers; and its general application to
the solution of problems, which are frequently presented
to every person who lays any claim to a liberal educa-
tion, make it an important, if not an essential branch of
education.

The object of this treatise is to present the science in
a manner sufficiently simple to enable all to understand
it, and yet so comprehensive as to embrace nearly every
thing that it is necessary for the student to learn, as a |
preparation for his future studies. The first part of the
work, which includes Quadratic Equations, will be found
to be more full than common, particularly on the subject
of pure equations. It is believed to contain :ll that is
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required, for one who desires to oblain a knowledge of
the more elementary parts of Algebra. The remaining
chapters contain the theory of Equations, Series, Loga-
rithms, Indeterminate and Diophantine Analysis.

Most teachers have found that children commencing
the study of Algebra are frequently at a loss to understand
the nature of the operations they are required to perform.
The addition and subtraction of letters seem to them
foclishness. Some preliminary exercise is necessary to
enable them to perceive the utility of their labours. It
is hoped the preliminary chapter in this work will do
something towards removing this inconvenience. The
questions selected are so simple that no child who is pre-
pared to commence the study of Algebra will find much
difficulty in performing them; no operations being neces-
sary but such as the method of instruction universally
practised by all thorough teachers of arithmetic will
have rendered familiar. In solving the various questions
that are found in this chapter, the student can hardly
fail to become familiar with the meaning and use of the
symbols ; and thus be prepared to enter upon the sub-
sequent portions of the work, without that embarrass-
ment to which allusion has been made. It is earnestly
recommended that he be made fully acquainted with this
chapter before he is allowed to proceed.

Considerable care has been taken to make the expla-
nation of the various rules concise, yet clear. The at-
tention of teachers is particularly called to the remarks on
the absolute negative quantity, art. 11 and 12 ; in which
an attempt has been made to relieve the pupil from a
cause of embarrassment to which he is generally sub-
jected when commencing his labours. The demonstra-
tion of the rule for signs in multiplication and division,
has no claim to novelty. Notwithstanding its import-
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ance, it is often omitted in elementary algebras. The
omission of such demonstrations will at once be seen to
be objectionable, when it is remembered that children
are taught Algebra for the purpose of putting in their
hands an instrument by which they may remove difficul-
ties they meet with elsewhere. Such explanations should
never be passed over without being understood ; an oppo-
site practice leads to loose habits of study, which often
lay the foundation for much future difficulty, and deprive
the pupil of the satisfaction which he would feel from

‘the consciousness that every thing in the work he had

studied had become his own.

The method employed, art. 17, in explaining the force
of the index, was generally used by ancient authors
it has been too much neglected in modern treatises. It
will be found to give more precise notions respecting
the exponent than can be obtained in any other way.

Throughout the first part, numerous examples have
been given, sufficient, it is believed, to familiarize the
student with all the methods of solution employed.

In the Second Part, the theory of equations has. been
much more fully developed thanin any elementary treatise
with which the author is acquainted. Care has been
taken to preserve perfect rigour in the demonstrations.
Some of these will be found to be very concise. The
beautiful theorem of M. Sturm, for which he obtained
the mathematical prize from the French Academy, has
been developed at some length ; as well as the compendi-
ous method of Horner for approximating to the values
of the roots of an equation. The chapter on the Sum-
mation of Series has been principally taken from Young’s
Algebra ; that on Binomial Equations from a treatise on
the theory of equations, by the same author. For the

1*
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theory of Diophantine Analysis, the author is principally
indebted to the admirable treatise on algebra by Euler.

In the preparation of the work, most of the treatises on
the subject in common use have been consulted, more,
however, for the purpose of discovering what had been
done, than from an expectation of deriving much direct
assistance from them. For the greater part of the theory,
the author is only so far indebted to books as they have
enabled him to store his own mind with knowledge on
the subject. In selecting examples, however, he has
made free use of all the treatises in his possession. A
considerable number have been taken from ¢ Bland’s
Algebraical Problems.”

In conclusion, the author would remind those who
may be disposed to use the work, that in a treatise of
this kind much that is new could not be expected. Most
that can be done is to simplify the arrangement, and
render the demonstrations more clear and precise. If
this result has been obtained, and an important branch
of science has thus been made more accessible, one
great point has been gained. With these remarks the
author leaves the work to the judgment of an enlight-
ened public.

Philadelphia, bth month, 1846.

———— ——— ——- e - . ——————
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SYNOPSIS OF THE DEFINITIONS.

.. This sign is used for therefore.

oc Signifies infinity.

« Indicates the difference between two quantities between
which it is placed.

Afirmative quantities are those affected with the sign 4.
A quantity withouta sign is always considered affirmative.
(Ar. 10.) S

Negative quantities are those affected with the sign —.
(Art. 10.)

Monomial quantities are those whose parts are not separated
by the sign + or —; thus @, 55% and 6 b¢® are mono-
mials.

Binomial quantities are such as consist of two monomials,
connected by the sign4-or — ; thus a 4 b and 8 a®—5b¢c
are binomials.

The monomials which form a binomial are called Zerms.

Polynomial quantities consist of more than two terms; thus
4 a — 5 b% 4+ ¢* is a polynomial.

Cocfficients are numbers joined to any quantity to indicate -

how often it is considered as being repeated; thus 3a is
the coefficient of & in the expression 3 ax. (Art. 16.)

Index or Exponent, is a number or symbol placed over an
expression to indicate some power or root; thus 2 is the

exponentof a; § of (a + )%, (Art. 18 and 89.)
9



10 SYNOPSIS OF THE DEFINITIONS.

Homogeneous quantities are those which contain the same
number of factors ; thus z%y* and a®zy® are homogeneous,
each containing 6 factors. (Art. 25.)

Ratio is the relation which one quantity bears to another in
magnitude, and is expressed by dividing the second by the
first ; thus the ratio of 4 to 5 is 2

Egquation is an expressibn of equality between two expres-
sions ; the two expressions considered equal being called
the members or sides of the equation. (Art. 6.)

L ane. o



ALGEBRA.

CHAPTER I.
DEFINITIONS AND PRELIMINARY EXAMPLES.

Art. 1.—Algebra is the science of computing by arbitrary
characters. By it we are also able to trace many abstract
relations of numbers, which can not be done by common
Arithmetic. ’

The quantities employed in algebraic calculations are
represented by symbols; for which purpose the letters of
the alphabet are generally employed.

The different operations upon these quantities are indi-
cated by signs, with most of which the student has become
familiar in Arithmetic. Thus .

2. To represent addition, we make use of the sign +,

lus) or more. a -+ b, which is read e plus b, signifying
that the quantity represented by b is added to that repre-
sented by a.

3. — (minus,) or less, placed between two letters, indi-
cates that the quantity represented by the latter of these let-
ters is to be subtracted from that represented by the former.
Thus @ — b is read a minus b, and signifies tie remainder
left by taking b from a.

4. x is used to indicate the product of the quantities be-
tween which it is placed. a x b is read a multiplied by b.

Multiplication is often expressed by placing a dot between
the factors, or by simply writing them as in a word. Thus,
a. b, or ab, indicates the product of the factors @ and b, and
is consequently identical with a x . Similarly, 8 a and
2 x indicate respectively three times the quantity represent-
ed by a, and twice that represented by .

11
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PRELIMINARY EXAMPLES.

5. The division of quantities is expressed by writing the
divisor after the dividend, and separatinﬁ them by the
ra

sign ;. or by placing them as a vulgar
visor of course being the denominator.

a

read a divided by b.

ction, the di-
Thus, a + b, or

3 signifies the quotient arising from dividing a by b, and is

6. The sign =, (equal,) expresses the equality of the
quantities between which it is placed.

An expression of equality is called an equation ; the quan-
tities represented as equal being called the members or sides

of the equation.

7. To exhibit the conciseness which results from the use
of these symbols, we shall employ them in the solution of the

following problem.

It is required to divide $1000 amongst three persons, A,
B, and C, so that B may have $50 less than A, and C $125

more than B.

By the use of ordinary language
it may be solved thus :ry gune
"~ A has $50 more than B.

C has $125 more than B.

Therefore the three will have
$175 more than three times the
share of B.

Consequently three times the
share of B, and $175, must make
the sum to be divided, or $1000.

Three times the share of B is,
therefore equal to $1000 diminish-
ed by $175, or to $825.

Hence the share of B is equal
3 or $275,
and A’s equals  325.
C’s ¢ 400.

to

Algebraically thus:
Let xrepresent B’sshare.
Then A’s is z 4 50.

C’sis x 4 125.
Therefore the three
will be
3 x4 175.
We will consequently
have
3 z 4 176 = 1000,

or3z=1000— 1756 =
825,

andx = 275=DB’s.

z4+ 50=325=A’s.
x+ 126 =400 =C’s.

In the above example, the solution by the use of ordina
language was easy ; in many cases, however, this is difficult

even when it mar

use of algebraical symbols.

be performed with great readiness by the

The following simple examples will enable the pupil fully
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to understand the advantage, which the use of the symbols
above explained possesses; and will render him familiar
with their application. g

Ex. 1.—Required to divide a line of 125 yards in length
iato three parts, such that the middle may be one-third as
long asone of the extremes,and ten yds shorter thanthe other.

Here, if we represent the middle portion by 2, the extremes
will be 83z, and & + 10, respectively. The whole line will
therefore be 6  4- 10. Consequently, we have the equa-
tion 5x+4+10=125

and 52 =125—10=115. (A)
whence =23 the middle portion.

and z 410 =33 the extreme portions.

Ex. 2.—A post is half its length in the mud, fifteen feet
in the water, and one-third of its length above water. Re-
quired its length. ' :

Let x represent the length, then the separate portions will

be % in the mud. _

x . .

— in the air. -

31

15 feet in the water.

Consequently g +§ + 15 is the length of the post.

Hence x=;+§+15.
To avoid the embarrassment arising from the fractions we
multiply the several terms of the expression by 6, which
ives62r =82+ 22+ 90 =5z 4 90
ubtracting 5 2 from each member, we have
6 z — b, or x = 90, the length required. (B)

8. There are some important remarks to be made on the
processes employed in the preceding solutions.

lst. JAny quantity may be transposed from one member
of an equation to the other, if we change its sign.

This is exemplified in the equation marked (A) in the first
example ; 10 having been there transposed from the left-
hand member to the right, its sign being at the same time

2



14 PRELIMINARY EXAMPLES,

changed from 4 to —: and likewise in the equation (B),
of the second example, where 5 & has been taken from the
right to the left-hand member, its sign being changed.

The correctness of this operation is manifest from the
principle, that equals, increased or diminishéd by equals,
must still be equal. Thus, in the first case above &uded to,
the left-hand member is 5z + 10. If, then, we change it
to 6, we diminish its value by 10; and, consequently, the
right-hand member, 125, must likewise be diminished by
10; which changes it into 125 — 10 = 115; so that the
equation will read 562 = 125 — 10 = 115.

Had the original equation been 5 2 — 10 = 125, it is evi-
dent that the lefi-hand member is 10 less than 5 2, and must,
therefore, be increased by 10 tp make it 5. Increasing the
other member by the same number we. should have § z =
125 4 10 =:135.

9. JAn equation may be cleared of fractions by multiplg{-
ing all its terms by the least or any other common multiple
of the denominators.

The reason of this is plain.

Ex. 8. A father in his will directed his property to be
divided amongst his daughter and two sons, in the following
roportions, viz.: the elder son was to have one-half the estate,
ess $13000 ; the second son was to have one-third, less $2000;
and the daughter was to receive one-fourth and $3500. He
likewise directed the remainder, which was ascertained to
be $6000, to be given to the « Pennsylvania Asylum for the
Blind.” Required the estate and the shares of the children ?

" Here, if the whole estate be represented by z,

the elder son’s share will be- - 3 2 —13000
Younger’s - - - - - « 3x— 200
Daughter’s - - - - - iz 4 8500

Consequently

4 2 — 13000 + 3 = — 2000 + } = 4 3500 + 6000 = x
Clearing of fractions, by multiplying by 12; we have
6 x — 156000 + 4  — 24000 + 3 4 42000 + 72000
=12z :
or, transposing, '

62 + 4z 4 8z — 127 = 166000 + 24000 — 42000
72000

— .
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that is, ’

13 2—12 2=180000—42000—72000 =138000-—72000
: = 66000

or, x = 66000 the whole estate,

and § z — 13000 = 20000
$ x— 2000 = 20000 }the children’s shares.
tz4 3500=20000)

Ex. 4. What number is that, to the double of which if 18
be added the sum will be 96 ?
Here the equatlon will evidently be 2z 4 18 = 96.
Jns. 39.

Ex. 5. What numbér is that, from five times which if we
subtract 24 the remainder will be 196 ? -
Or, bxr— 24 =196 Ans, 44.

Ex. 6. In a certain school, if the number of boys be
doubled, and then increased by 25, the result will be 367.
How many are there ? Ans. 171.

Ex. 7. What number is that whose double exceeds its
half by 787 - Ans. 52.

Ex. 8. A number increased by its half, then by its third,
and afterwards diminished by 56, makes 164. What is
that number ? JAns. 120.

Ex. 9. In a certain orchard, one-half the trees bear apples,
one-fourth bear plums, one-fifth peaches, and twenty bear
cherries. -How many in all? dns. 400.

Ex;: 10. What number is that, which being increased by
75, the result shall be four times the original number ?
JAns. 25.

Ex. ll. A and B set out from Philadelphia towards Bal-
timore. A has 3 hours the start, and travels 6 miles per
hour. B travels 7 miles per hour: how long will he be in
overtaking A, and how far will he travel before that occurs ?

Ans. Time, 73 hours; distance, 523 miles.
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Ex. 12. What number is that whose fourth part exceeds
its fifth part by 25? ' ' Jns. 500.

Ex. 13. A gentleman purchased a horse, a chaise, and
barness, for $1000. The horse cost four times as much as
the harness, and the chaise three times as much as both.
Required the price of each.  ° ‘

Ans. Harness $50 ; horse $200, and chaise $750.

Ex. 14. The head of a fish is 11 inches long, its tail is as
long as its head and half its body ; and its body is as long as
its head and tail. What is the length?  /ns. 7 ft. 4in.

Ex. 15. One-fourth of the contents of a cask leaked out,
ten gallons and a half were afterwards drawn out, after
which the cask was found to be two-thirds full. What was
the whole content of the cask ? . Ans. 126 gallons.

Ex. 16. One-fifth of the boys in a school are studying
arithmetic, one-third algebra, one-fourth geometry, and 13
are studying surveying. What is the whole number?

Jns. 60.

Ex. 17. A criminal having escaped, travels 16 hours
per day, at the rate of 3 miles per hour; after three days
his route is discovered, and an officer, starting in pur-
suit, travels 12 hours per day at the rate of 5 miles per
hour, how long before he overtakes the fugitive, and how far
will they have gone ? JAns. 12 days, and 720 miles.

Ex. 18. An estate of #39,000 is to be divided amongst A,
B and C, in the following manner: C’s share is to be one-
third of A’s, and B’s is to be equal to C’s and half of A’s.
‘What is the share of each ? >

Ans. A, 18,000; B, 15,000 ; C, 6000.

v C
Ex. 19. Bought a piece of cloth which proved to be
only  as long as it was marked, nevertheless, by selling it
at $6-00 per yard, I received .as much as it cost. What
was the cost per yard ? Ans. $5:25.

Ex. 20. A servant was hired at 62} cents per day fora
year, consisting of 313 working days, on condition that he
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should be charged 37} cents for his board every day he was
idle. On settlement, it was found there was $145-623 due
him. How many days was he idle? - JAns. 50.

- Ex. 21. A and B'commence trade with the same capital.
The first year A gains. $5000, and B loses one-fourth of
his stock. When A’s money istreble B's. What was their
capital ? ’ < JAns. $4000.

Ex. 22. Three men purchased a ship. A Apaid 3ths,
B, 4,ths; and C the remainder, which was $7800. What
was the whole cost ? _ - Jns. $18,000.

. Ex. 23. A can do a piece of work in 12 days, but wish-
ing to have it finished in less time, he hires B, and the two
perform it in 7 days. In.what time could B alone have
done it? JAns. 164th days.

Ex. 24. A woman purchased.  some eggs at 10 cts. per
doz., and twice as many at 9 cts. per doz. She sold them at
12 cts. per doz., and thereby gained 96 cents. How many
did she purchase altogether? JAns. 86 dozen.

Ex. 25. The sum of two numbers is 25 and their differ-
ence is 12. What are the numbers? ns. 184 and 63.

" Ex. 26. There are three numbe1:§ whose co;rlmon differ-
ence is 4 and sum 48, ' What are the numbers ?
. dAns. 12, 16 and 20.

Ex. 27. A, Band C can perform a piece of work in' days.
A alone can do it in 12 days, and B in 16. In what time
could € accomplish-it? : JAns. 20 days.

Ex. 28. Required to divide a line of 99 inches into three

"such parts, that 4 the first, ; the second, and" § the third

shall be equal. - What are the parts?
. ~ Ans. 22, 83, and 44 inches.
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CHAPTER II.

ON THE PRELIMINARY RULES.

SECTION I
 On the Addition of Algebraic Quantities.

10. By the addition of algebraic quantities, is understood
the collecting them together ; performing with each the opera-
tion indicated by its sign. Thus when we collect the
quantities in the expression 6 4- 5 —3 + 2, we find the
result to'be 10. = This operation is considered to be one of
addition, although one of the processes is really a subtrac-
tion. : ’

In regard to the addition of positive numbers, (those
affected by the sign +,) no difficulty can arise, since the
operation 18 manifestly performed in the same manner as
arithmetic. Thus 6 +44+3=13,and6x +4 2+ 32
== 13 z,as much as 6 apples + 4 apples 4- 3 apples =13
apples. . -

If dissimilar quantities are required to be added, we
can only do it symbolically. Thus, if Thomas received
from one man $5, from a second 3 yards of cloth, from a
third 2 yards of cloth, and from a fourth $12. He receives
altogether $17 - 6 yards. So that $5 + 3 yds 4 2 yds +
$12 =817+ b6 yds. o '

Soalso9a 4+ 62 +3z+4+R2%a=11a48=x.

If any of the quantities are negative (that is, are af-
fected with the sign —) they must be subtracted from the
sum of the like posifive terms. Thus let the value of
the expression 76 — 37 — 24 be required. This expression
evidently means 76 diminished by 37, and the result dimin-
ished by 24. We therefore have

75 —87— U =388 —2U =14,

Now it must be evident that diminishing a number suc-
cessively by two others, is equivalent to diminishing it by
their sum. Consequently
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76 — 87 — 24 =75 — 61 = 14 as before.

We here see that to collect two negative quantmea we add

themand prefix the common sign —

Let now the result of the fol]owmg opemhons be required,.

viz.,

7+5f3+8—8—4+ 12.
It may be reduéed in the following manner :

7+5—3+8 644 12=12— 3+8—6 -4+ 12
=9+8—6—4+12

_.17 6—4+412=11—44+12=7+12=T19.

This process is, however, tedious, and ma. be abbreviated
by observing, that in general it can make no difference in
the. final result, whether we collect the quantities in the
order in which they were written or in any other that may
be more convenient. The above quantity is therefore the
saméas7+6+8+12—83—6~4= 32—18=19.

When the quantities are dissimilar, they of course can
only be so far collected as to include in separate amounts
those of the same kind. : .

- 11. Again, let it be reqmred to collect the following quan-

tities:
"844—10412,
We may proceed thus:

84+4—10412=7—104+12 .

but here we are met by a difficulty, since the next operation,
which requires us to subtract 10 from 7, is mamfestly im-
possible.

Such cases general]y indicate some absurdity in the con-
ditions, as will be seen by the following example..

A snail commenced c]y.xmbmg a pole. The first hour he
ascended 3 feet, the next 4 feet, the third he descended 10
feet, and again ascended 12 feet the fourth hour. What is
his elevation at the termination of the four hours?

This problem will give the expression above, viz.,

84+4—104 12, )
and is absurd since, when he had ascended but 7 feet, it

was impossible to descend 10 feet. -~
In such cases it is usual to deduct the positive from the
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negative quantity, and prefix the sign — to the remainder.
Thus 7 — 10 == —3; by this means reducing the absurdity
to another form. cL .

12. We must not sup?ose, however, that negative results
always indicate impossible conditions. The following is an
instance in which no absurdity is implied.

A gentleman started out to collect some déebts. He first
obtained from A $100, then from B $300; after which he
paid C $700, and finally received from D $150. What was
the resuk of his day’s operations ?

The formula is evidently

100 4 300 — 700 + 150
= 400 — 700 — 150
- © 800 4180
= — 150

‘We have in this case the same difficulty as before ; but there
is no absurdity, unless the gentleman had no funds, on
which he could draw to pay the $700. - In case there were
such funds, they would be diminished $300 by this pay-
ment, and $150 by the whole day’s operations.

So in the former case, had we supposed the snail to set
out at a point more than 3 feet high, the absurdity would
cease to be other than apparent; the result 7 — 10 =—3
merely showing that at the end of the third hour he had
arrived at a point 3 feet lower than that from which he had
started. The result —3 4 12 =9 indicates a final pro-
gress of O feet. -So that, had his original elevation been 5
feet, he would have arrived at the height of 14 feet at the
end of the four hours.

Let it now be required to add the quantities

6a—4b—38¢c,7a—2b-+4cand6¢+2b—8a.

The result may be written. = o

6a+7a—8a—40—2b6+26—-8c+4c+4+6¢

==10¢l—r-4b+7£o . - :

In performing addition, therefore, collect the similar quan-
tities from all the expressions to be added, operating with
each as indicated by its sign ; that i3, collect all the posi-
tive quantities of the same kind into one sum, and the
negative into .another: take the difference of the results
which must be affected with the sign of the greater.
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: Exanpres. _

Ex. l.—Add ’ ' 2
ba+4b— 8¢z  6a 4+ by —6be
Ta—38b4 2z Tbe+ 4a —6

—~8a—7b— 8cx - 12y 4+ 7a —8bc
9a+b6b+ 12¢cx 16y + Rbc—4a -
18a— b+ Bex - 13a 42y

Rz

In these examples the positive quantmes are collected into
one amount and the: negative into nnother, and the differ-
ence taken, which is set down with the sign of the greater
sum. Thus,ba+7a+9a=21a,and21¢—8a=18a;
again, 46 4-6b=953b6+756=105,and 96 —100 =
— b, so of the rest. The positive and negative amounts in
the case of b¢ in the second example are equal and therefore
the remainder is nothing.

Ex. 3. Required the sum of the following quantities, viz. :

8a—2b44cx,7cx—86+8a, —9a+3cx—5band
2a—3cxr+4b.

Ex. 4. Required the sum of 8 az — 4 be+ 12 ¢, 7 cx
—bax+14be,8 ax — 12 be+3¢c2,and 2 bc — 6 axr+-8 cx.

"Ex.5. Add 3ay +4bz — 5 ac, 7bxr — 8 ac + 2 ay,
8ac—7ay+2b:r,and9ac—3bz+7ay

Ex. 6. Add 3abc—4ac—§bc,3ac+,abc—7ac,
and 94 ac+qbc—bc

Ex. 7. Add ax — 4 ab 4 bd, 3 bd — 2az+ab 7 ab
—2aa:—bd and5ab 3ax+l2bd.

Ex. 8. Add3abd+4 abz-—ﬁcx,Sca:—llabz
+ 12 abd, 9 abz — 12 cx 4 8- abd, and 7 cz — 16 abz
+3abd
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SECTION IL
Subtraction.

18. Subtraction being the reverse of addition, it is evident
that we must apply every term in the subtrahend, with the
opposite sign from what we should were the quantities to be -
added. erefore, to subtract ont algebraic expression

rom another we must change all the signs in the subtra-

end, and then proceed as in addition.

This will be made plain by the following examples, viz

add 6a+45b B 9a+3b
and 8a—2b: consequently d1m'dby3a—2b
sum 9a+3b equals ‘6u+5b

Now this latter result would equally be obtained by addmg
. : 9a+43b
and. —8a+2b -
since theresultis 6a-+4+56b
and this operation is evidently in accordance with the rule,

14. The reason of the above rule may .perhaps be made
more clear by the following illustrations.

If we diminish any number, as 50, by the sum of any
numbers, say 15, 6, and 9; it'can evidently make no differ-
ence whether we- diminish it separately by the numbers
themselves or first find their sum, and “then subtract this.
The former of these operations leads to the formula.

50— 16 —6—9
in which the subtracting terms are set d0wn with the
sign —.
gEet it now be required to ascertain the remainder arising
from subtracting 30 — 10 from 50. .

If we diminish 50 by 30; we have 50 — 80 = 20 for the
remainder. This result is evidently too small, since the
subtrahend was too great by 10. To obtain the true-remain-
der we must evidently increase that so obtained by 10; so
that we shall have for the final result,

50 — 30 +4 10 or 20 4 10 = 30
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* 'The student may satisfy himself of the correctness of this
process, by first reducmg 80 ~ 10, and then subtracting the
result Thus, 30 — 10 = 20, and 50 — 20 = 30, as before.
15. To generalize the above reasoning we may proceed
thus. Let it be required to subtract ¢ — b from 2. Now it
is evident that the quantity @ — b is b less'than a, If, there-
fore, we subtract .@ from z, the remnmder x — a, will be too
- small by b, and will therefore require to bé increased by b.
The true resnlt is, therefore, - ) '
' z—a+bd
in which each term of the subtra.hend is apphed with a cons
trary sxgn ' N
Emm.ns '

Ex.l From 7az—8be+ 88y . - '
take daxr+8bc— by . .
Sar—6bc410by.

Ex. 2. From 8z —4bz+ 9be »
~ take 3bx—Tbc + 2z .
6z ——7bz+16bc.'

Ex. 8. From 8ax—-36y+4dztake 3dx—5ax+3by

l;]xbn! From 9bc.’c+7aby—4b:t,take 3 bex + 2 aby

"~ Ex. 5. me36:'ci;-4acy+bgcytqkeﬁacy—abz—bc.
Ex. 6. From 9 ab—7de 4 8eg take 8 eg —7 de — 9.ab.
"Ex. 7. From the sum of 3ab+4cd—-6aca:,and 2ed

—4 bz + 3 ab—2 cd, take 7 ab—3 bz + 8 cd.

Ex. 8. From $ a4 4 b, take  a—13 0.
Ex. 9. From 9 ab— —7 dz + 8 ey, take the sum of
3ab+7ey+lldzand9dx—6ab—3ey

Ex. 10, From the sumof3b.:c+4ay—15 be 4+ 20, and
35+7ay+4bx,takethesumof3+8ay—7bz,3bc+8ay
+ bz and l5bz—32—8bc
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SECTION Il ’
Mulhpluahon.

16. It has already been said (4) that the product of two
quantities, such as a and b, is expressed by a xb,a. b, or
more simply by ab.

In the same manner.the product of any n number of factors
is expressed. Thus, a x b X ¢ x & is written abed. :

8o likewise, 5 ab X 8 ¢d =bub3cd. But since it is in-
different what order is maintained amongst the factors, the
result may be written

"6 x 8 x abed, or 15 abed. -

Hence, to multiply monommla, (or expressions conslstmg )
of but one term) we multiply the numerical parts, ot coefli-

cients, and to ¢ e product annex the product of the lztcral
parts.
Exampres.
Multlply 4 ac by 3bd, v . Jns, 12 abcd.
8ad by bac. . "« 15 aacd.
“ 4 aax by 7 ay.". « 28 aaary.

What is the value of 7 ay.x 125z x 6ab « 504 aabbay.
Reduce the following, viz. : -
6ar x3ay x4be

8by x6abx xRed - =
b aaabbbx X 7 anabxxr  =-
7aba:a:yx3abxzx4z =
12 aabe x 8 abece =

~ 16 aad x 2 bbe X T abed-
13 aabec % 6 abcx : !
5aacx4aabbcx7aabz=

17. In the above examples we hiave frequently met with
such expressions as aaqa, bb, &c. .
Now we have léarned in anthmetlc that the
product of two equal factors'is the square of one of them,
« - three “ “ cube, . «
“ four “ « fourth power, &c.
Consequently aa is the square or 2d power of a.
«aa is the cube or 3d power of a, &c.
In order to render the expressions more concise, the num-
ber of factors is indicated by putting a small figure over -the
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root, and a little to the right; thus, e*is written for aa, and-
is read a’4 square, or the square of a.

Similarly a® = aaa, and is read a’s cube, or the cube of ¢,
80 a%, a%, a’ are respectlvely the same as aaaa, aaaaaa, and
aaaaaaa ; and are read a’s fourth, a’s sixth, and o’s seventh
power.

_ 18. The figure which thus indicates the power, is called

the exponent, or index, and tepresents the mumber of equal

factors that are multiplied together. .Thus, when we say
4* = 64, we mean.4 X 4 X 4 = 64."

'Phe mdccea must. be carefully distinguished from the
coefficients, since these express only successive additions,

_while the former represent successive multlphcatwns. ‘Thus,

3a—a+a+a,wh11ea‘==:axa)<a.

19. From whnt has been said above, it is ea.sK to write
the results in' the lastarticle more concisely. The second,
third, and fourth may be written thus, 15 a%cd, 28 a*zy and
504 a’b’xy

The student will thus sunphfy the remaining results in
that article.

20. -Since T pt = axxrx, and 25 = TELXT
n is evident that z¢ X x° = 2xxrr X *TTXTT -
= PXXTTLEXL = X9

Similarly we should find that - »
2 X 2® = 2%, 27 X 2% ="2", &e.

Hence,to multiply dlﬂ'erent pawers of the same root we
add their mdlces.

EXAMPLES.

Exl 7a x5 a® =  85as% -
Ex.2. baz*x4daxs 20 a®z5.
Ex.3. 8a%2tx6a'2 18 a5,

Ex. 4. 922" %7 &z
Ex. 5. 7 ab%c® X 4 a%be?
‘Ex. 6. 12 a*bc* X 8 a’bc®
Ex.7. 8 0 5 a::‘by' = )

Ex. 8. 16 a%z* X 8 ¢°2%7 = . : -
Ex. 9. 12 a®b*e® x 4 a*“b’c; =
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Ex. 10. 17 a%b*c* X ac® =
Ex. 11. Bz%y'z X 9 zy'z* =
Ex. 12. 15 a*z%y® X 3 b7x%® =
CEx. 18, 90y x4 a'd® =
Ex 4. 16 b'd'c‘xﬁb‘d'ewaa

MULTIPLICATION OF POLYNOMIALS, '

21 Ifa + b is to be multiplied by any number as 8, it is
equivalent to adding. three quantities, each equal toa+b;
the result will evndently be 8 a +4 3b, which consists of three
times the first quantity plus three times the second. Had
the expresslon%een a—b, the result would have been
8 a—3b. This would be equally true if -the multiplicand
consisted of ‘more than two terms, or if the multiplier were
any other number. Hence,

To multiply a polynomial by a positive maultiplier, we
multiply each term separately, and connect the results by
the signs with which the several terms were affected in the
multiplicand.

Nore.—To indicate that several quantities are to be nﬂ'ect-
- ed by one_ sign we enclose them within brackets ( ), or
place a vinculum, , over them. Thus, (6 4 4) x5 is
equivalent to 10 X 6 = 50, wlnle 6+44'x5=6+20=26.
Bo, also, (@ + b)® or a+b is the square of a + b, while
a + b% is equal to b* + a.

Exanprss.

Ex. 1. (5az—6a8b—3ac)x4a_20a’x—24a‘b— 12a%.

Ex. 2. (Txy*—4 ez 4+ 3b)X 6u’z‘=42a’z‘y’—24a’z’z
© 418 a%as. :

Ex. 3 (4ab’—5a’c+b“)x7a’b3,c

Ex. 4. 8 &'z = 15 ax? 4 16) x 12 a*x®

Ex. 5. (9 b —8pic+b%") x 16 d%¢

Ex. 6. (12 ab®*— 4 d*z—5 a’) X 4 ab’cx

Ex.7. Bab*—3 0c+8ch)x4dbet - -

Ex.8. (9ad—4ad—8 d)x 7 ath

Ex. 9. (3 %y —$ 0Pz + 2 o) X 12 Par’y® =

In the above cases we perceive that a negatlve\quannty
multiplied by a positive, gives a hegative product.
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22. We shall now proceed to the case in which the mul-
tiplier is a polynomial as well as-the multiplicand.

Let it be required to multiply # 4 y by @ + b: This is
evidently requiring us to‘increase z 4 y, a 4 b times, which
is equivalent to multiplying it by @ and also by b and adding
the results. The operation may be arranged thus:

z +y.
a +0 -
- ax4ay redyct by a
: .,-il-b"a{:<+'by P :} ,_yb .
ax + bz + ay + by ° “«  a+b
Similarly if the product of (z — y& by (a + b) were re-
quired, the operation would evidently be :
N v z :
a+b . _
ar—ay product by a-
bz —by “« by b

az—ay +bz—by  by(a+d)

23. Had the multiplier been a — b it is evident the first
line az — ay, which is @’ times the multiplicand, would
have been too great ; and would require to be diminished by
b times (z —y) or bz — by, which is the second line. But
as in subtraction, we change the signs of the subtracting
terms, the operation bti addition might still be preserved, by
writing the terms in the last-mentioned line, with the oppo-
site signs, as below. - .

. - )
=y |
axr —ay - -productby a
— b2 + by I —~b

dl)'-—lay—b:t-i-by “ (P—b)-‘

24. By examining the various terms in this operation
we perceive that a X = +.ax

ax—y:-— .
—b X xm—‘b’g
—b X —y=-+by ™

Hence we derive the following
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‘Rule for Signa,

Like signs in multiplication produce olus unlike cigm
in mdupllgcz.m produoe minus. - P '

EXAMPLES QF THB MULTIPLICATION OF POLYNOMIALS,

Exla4+d = Ex. 2. a—b
.a4+bd . a—b
a+ab a*—ab
ab +5° . —ab b
L~ @42ab 4+0* T ade-2ab+ P ’
Ex.3.'a+b ‘
a—b
@t ab
— ab—b*
a b
Ex. 4. @ @ —2ab 411
T -a +b
—2a% + ab? o
@b —2ab* b -

Ry e 1y

'Ex. 5. 8a% —2ah 4 b
. 2ab - +b* .
6B — A | B ab
4 8a%°—2ab* + B8
6 a*b® 4 3 a®® — 4 a’b* -+ bF i

Ex. 6. Multipiy %+ y'>b'y' By, Ans, zt—ys.

Ex. 7. Muluply x* —B oty + Byt -y by:c'--2zy
+y*

Ans. *—ba'y + lOz*y'—lOa:’y'+ b zyt—1y5.
Ex. 8. Multiply 3 a*—7 &*b+ b* by 2 a®*—4 ab. N
Ans. 6a®—2W6 a*b + 28 a'd® + 2 a*b® — 4 ab*.

Ex. 9. Muluplyx’+2a:J+y’bym'—2zy+ o,
,Ans. 2t —2 2P +y‘
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Ex; 10. Multxplyx‘ + x‘y + ;c'y' + zy‘ + y‘by :c—y
Ex. 11. Square 82'—4az. ° -
ﬂna,9z‘—24ax‘+ 16a’x’

) Ex. 12. Squa.re a* =2 ax + x°.
Ans: a‘—4a’x+6a’z’—4ax‘+x‘.

Ex. 13. Cubea:+y
. Jns. z’+3x‘y+3¢y’+y.

Ex. 14. Detennme the fifth power a2 4 b*..

' . . JAns.a® 45 41959 4 10 a%*

: - © 4 10 a%® + 5 a%b® + b,
Ex. 15. Multiply the s%uare of @ + b by the cube of a—b.
: J/Ans. a®*— a* ad* +2 a*h® + ab*— b5,

Ex. 16. Determme the product of the four factors
. a—4x,a—.t,a+zanda+4x :
. Ans. a*—17 a*z* 4 16 z*.

"Ex. 17' Multiply 8a*—7 a*b + 8a*5*—B b4 by 2a°~8ab

+%
Ans. 628 —23 a%b + 40 a'b®— 381 o
—2 a%* + 16 ab*— 5 be.

25. It is often found that the different terms in the multi-
plicand, and also. in.the multiplier, contain the same nums
ber of factors. Thus in the last example of the preceding
article, the literal portions of the severar terms of the multi-
plier are a* = aaaa, a®b = aaab, a*b* = aabb and b* = bbb,
each being composed of four factors So in the multlpher,
the literal part of each term contains two factors.

Quantities of this kind are said to be homogeneous.

-In all cases where there are not more than two letters
empl (yed and the several terms of the multiplicand and

the multiplier ate homogeneous, the operation may
be shortened by omitting®the letters until the close.

In arranging the terms, we must be careful to place them
according to the powers of some letter, beginning either at
the hxghest or the lowest, and’ regularl (fl escending or as-
cending.” Should any term in the reguf;r series of powers
be wanting, its coefficient must be supplied by a zero. In
example 17, above referred to, the series of powers of a is

- at ab a;
3+
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a* being omitted, we must therefore conceive the term 0 ab®
to be placed between 8a%h® and —5 b‘ The complete
series of coefficients is therefora ~ .
in the multiplicand 8— 7 4-' 8 + 0—5
in the multiplier - 2— 8 4 -1
multlplymg these 6—14 4 16 + 0= 10
we obtain —_— 9421 —2U 4+ 04156

y 83— 7484 0—56

‘6—28+40—31—2+ 16—b

and supplying the letters we have for the product _
6a®—23 a*b + 40a‘b‘—3l a‘b’—?a’b" + 15 ab5—5 5°
as before. -
. This is called muln_phcatwn by detached coﬁ'icmmq

. EXAMPLES.
Ex. 1. Muliiply 28—3 2% + 3 by zh— :
Supplying zeroes for the coeﬁcxents of the mxssmg terms
we have
1—84+041
C140—T
CT=830+1
—1 +3_o—1
and theploduct is z‘—-s:c:‘y-x’y‘ +4 z‘y”-—y L -

Ex. 2. Cubea+3bbythlsmethod
Theopemuonm x ,
143
L 143
148
+38498
14649
143
- 14649 .
+34 18427
1+9+27 +27
Hencathemultma‘+9a“b+27ab’+276’

Ex 8 Multiply 5:«:’—8az’+5a’r—a’by a’+8¢3
+5a
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The coefficients in the muluplier must be reversed, the
operation will therefore be . .
65— 84 =1
64+ 34 1
%16+ 2B— &
16~ 94 15—3
R - 8+48—1
W+ O+2+ 7+2—1
~ And the product is 251"+21 a'z‘+7‘a'x‘+2a‘x—a“
Ex. 4. Multiply 8a*—56 az' 2 z* by 20*—6 ar—8 z°.
Ans. 6a‘—28a'z+%a’x'+3az'—6.z‘.
Ex. 5. Multlply 1 +2z+3:¢'+4x‘+5$‘ by 1—2.
Ans. 14 2 + 284 25 4 28— 25,
Ex.6.Muluply:t‘-—3:r’+3z—lb =224 1.
Ans. a5— bzt 4 10:1.‘-—10.7:“+5:v—l

Ex. 7. Muliply @+ 8ab +Babt by o —Ba%

+3wb'-—- 2 )
< Ans. a®—8ad +.3a'b‘-—b°. _
Ex. 8. Raise a—b to the fifth power by this process.
Ans. a®—5 a*h + 10 a*b'— 10a"ba + b abt—0s.
Ex. 9. Squafe a®—38 a%y + 3.
Ans. a6 .a%y-+9) o+ Yy,

SECTION IV.
Dévisiom.

26. The dmsmn of simple quanmles can present but little
difficulty, since its operations must be the reverse of those
of multiplication. ‘

Thus the product of two powers of the same root is
- found by adding their indices. ~ For example, o x a* = a®.
Hence, ¢*° + o7 = a® and as the operation will be similar
whatever the indices may be, it follows that.

To divide differént powers of the same root, subtract
' the index of the divisor from that of the dividend, the re-

mainder is the mdea: of the gquotient,
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‘We shall also find that the same rule for signs holds as in
maltiplication. .
Hence, in Mdtiplication and Divisjon
Like signs produce plus,
Unlike signs produce minus.
Nore.—The general value of = is 2=~ . If in this we
suppose 1 == m we shall have ‘
. E 'r-—
r=
orl= a°,
whence the Oth power of any number is equal to 1.

Agnin,it’in;nz"" wemakem =0 -

z° —n e L -
we shall have ;uz" or;"n:r ,

27. It is often convenient for beginners to write the divi-
sor beneath the dividend as in a fraction, and cancel the like
factors, as in arithmetic. . -~

Thus the division of - )
may be performed thus, o

27 athics .
e 2% |
the common factors 9, a?, 4%, and ¢ having been cancelled.

This mode of operation can hardly be recommended, how-
ever, except for those persons who have not acquired an
facility in calculation, as we may obtain the result in
cases, at least where the quotient is not fractional, by a more
simple process.. We should divide the coeéfficients, and then
the literal parts, setting them down in order: first, however,
having been careful to notice and write the sign with which
the quotient will be affected. .

In the above example the operation would be as follows :

—9 )20 aboes .
, — 3 a%c. -

Thus unlike signs produce minus; 9 into 27 gives 3,
@ into a* goes @4, b%into b gives 1, and ¢ into ¢ goes ¢
times. The result is therefore as above; the factor 1 not.
appearing, as it does not affect the resuit. .
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- ExampLEs. g
Ex.’'1. Divide —35.0%°* by—>5ab% . JAns. 7ab.
Ex. 2. Divide —15 a®b2® by 8 abz. - Ans.—b ax.
Ex. 8. Divide 21a%%¢ by K 7a%. = .
Ex. 4, Divide.. .18 5% by—6 b,
Ex, 5. Divide —386 a%%a?by . 8. abcz.
Ex. 6. Divide —9 ac’yz by Bac‘a:
Ex. 7. Divide —dica® ° by —dcz. .
Ex. 8. Divide -11%%c2¥ by b%cas,
Ex 9. Divide — 13 dc’y? by—b’cy’

28. It frequently happens that the divisor is not contained
exactly in the dividend. In such cases the quotient can
only be expressed by-a:fraction ; and the metho(é first point-
. ed out above is the most concise. o :

Thus, let it be tequired to (hv:de .

" —15 oz by 10 aizhy,
The  quotient would be represented by the fmcuon
16 a'z'y.
T10awy
which, by’ cancelling the common factors 5, a?, %, and % xs
reduced to -

. S
L TEm *
Agmn,%l:c‘y’z-l--—l‘la’z‘_y“::—-?;zay’z g—f,
the factois 7, , and Yy hanng been stncken out,
L Enu_rws.
Ex.). Diride 16a% by—8awt,  Ans.—22
Ex.®. Divide — 17 %o* by —8atba.  ns. 122,

"Ex: 8. Divide —21b%2 by 17 bea®.
Ex. 4. Divide — 33 a%by® by — 22 b%p.
Ex. 6. Divide — 29 b%%* by — 14 ab®c®

'Ex. 6. Divide. 85abz® by 15 ab%®.
Ex. 7. Divide 27 a%e by — 6 a®bc.
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Ex. 8. Divide —19 a®*ztby *; b%ce.
Ex. 9. Divide a%z* by  bazyz.
Ex. 10. Divide—8 a%c* by — 18 bzt

. When the dividend consists of several terms, these
must be divided separately, and the several quotients con-
nected by their proper signs. - ) :

Thus, (72 a%z* — 16 a°z* + 64 a'a:‘) +8a

is equal to 9w—2a’z‘+8az‘ '
The:redson of thls rule is too evident to need explanatlon.

-

Ex.um.ns

Ex. 1. D1v1delﬁa‘a.°—24a’z‘by8a’a:’ o
- Ans. a'z— 3a.t’

Ex. 2. Dmde 2 a'bc—16 ab’c’byQa’b
. 16 5ct

ﬂm 3 -—9a—n

Ex. 8. Divide 9a'b:c—4 ab*z® + 12 b’ by 3 d'ba:.-

Ex. 4. Divide le’y’—m'xy‘ + 14 2% by Tays.
Ex. 6. Divide 4a% +5b° by 2 ub.
Ex. 6. Divide 15 ab*z — 14 abz® + 25 a*bz by 5 ob.

80. The division of polynomials is performed in the same
manner as long division in arithmetic, applymg the princi-
ples laid down in the preceding pages.

In all cases the several terms of the divisor and the divi-
dend must be arranged according to the powers .of some
one letter, either beginning with the highest and reguylarly
descending, or with the lowest and regularly ascending.

Haymg so arranged them, divide the first term of the
divisor into the first term of the dividend, for the first
term of the quotient. Multiply the divisor by the term
thus detérmined, and subtract the product from.-the divi-
dend, arranging the terms as above direited.

Divide the first term of the remainder by the JSirst term
of the divisor, and 3o proceed until the operatwn s accam-
plwhed
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ExamrrEs.
Ex. 1. a-—:c)a’ Ratt23(a—2z
a@— ax. o
S —az4ad
.-L-az'+'b:’

Ex. 2, 44 ) o*— za(a._z‘
) a + ax
~ T e QL — 2
. . —ax— % e

Ex.8. 2 4y) = — y'(z‘—zy+y'—,"iy

Ex.4. 3a=b—2ab=+b«)6a4b=+3asbs_4aeb«+b~(2ab+b-
.. 6a%—da%ip2ab

S B0 —2ab® +b°

. B —2abs +be

BX~5-,é—y)w’ y’($‘+w’y+w’y’+wy’+y‘

Ex. 6. Dinde a4 5 by a' b,
Ans. a¥— ab 4 b9,

Ex 7 Dwxdea’—-2a"x’+z‘bya’+2ax+z’
Ans. @ — Lax + z0,



26 PRELIMINARY RULES.

Ex.8. Divide a* 802"+ 3% — z‘bya'+3a'z
+3azs 4 2% ,

Ex. 9. Divide 4 a*— b‘byaa 56. _

Ex. 10. Divide 6 z* — 8y8 by 32% — 2.

Ex. 11. Divide 27 — y” by z — .

Ex. 12. Divide a’—5a‘b+lOa’b‘—lOa’b’+5¢b‘
— b3 by @ — R ab + b,

Ex. 13. Divide 12 — 4y—3y’+y'by4 Y.

Ex. 14. DlndeSIz‘—lSz‘-{-lbyﬂz‘ 6z+1.

%x. 15. Divide 48 2 — 76aa:’ 64a’:r+105a’by2.r
—38a.

Ex. 16. Divide o+ y‘by 2+ y.

Ex. 17. Divide 1 by 1 4 .

Ex. 18, Divide 1 4+ 2by 1 — 2. _

Ex. 19, Divide 1 + z by 1 — 82z 4 2%

Ex. 20. Divide 1 by 1+ 2z 4 2.

81. If the terms of the divisor and also of the dividend be
homogeneous, and do not contain more than. two letters,
thﬁ operation may be performed by detached coefficients.
Thus:

"Ex. 1. Divide (ia‘b"+3a'ba 4a'b‘+b° by Sah
— 2ab® 4 b+
The coeflicients are, supplymg that of @ in the divisor,
and of a in the dividend,
84+40—-2+4+1)6+3—-440+1 (241
64+0—4+42
3+0—2+1
83+0—2+1

Now the literal portions of the first terms being a*5* and a’b,
that of the first term of the quotlent 1is ab. Hence the com-
plete quotient is

- Rab+- b0
as in Ex. 4 of last article.
Ex. 2. Again let it be requu:ed to dxvxde
628 —6y° by 32+ S 2%y + 3y
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Here the coefficients ar¢ - -. .
8404+840+38) 64+04+0+04+0+4+0~6 (2+4+0-—2
. 6+0+6+4+0+6
. 0—6+4+0—64+0—6 "

. . . —6+40—64+0—6 '
and % - 24 = % Hence the quotient is 22° + 0 zy — 2
=229 —2y% - _ - K4 4

As examples of this method, the pupil can employ those
of the last article, and thus more readily\compare the two
methods of proceeding. - - N

SYNTHETIC DIVISION. .

82. In the method of dividing by detached coefficients;
the several coeflicients of the divisor are successively mul-
tiplied by the various terms of the quotient, and the pro-
ducts subtracted from the partial dividends. Now, since in
subtraction we change the signs of. the subtrahend and then
add ; if we write the terms of the several products with their
signs changed, each. operation will beconre ohe of addition.

This may be done with facility by changing all the signs
in-the divisor, except the first, which must not be changed,
on account of the liability to error in the sign of.the quotient
to which such change would lead. No difficulty can arise
in the subtractions from the sign of the first term not being
changed, for the first term of the product being always the
same as that of the, partial dividend, need not be written.

Thus let it-be required to divide C

#—38 ar*—8 a2+ 18 a®z—8a'by x* 4 2 ar—2a*
writing the coefficients, changing the signs of the second
and third in the divisor, the operation becomes

1—2+4+2)1—8—8F 1I8—8(1—56+4
A S YR _
. —b —6418 _
*410—10 .
. . ‘,4 + 8 —8 N -
L o *_8+8 f
and the quotient is z*—5 ax + 4 a%

In examining the above process, we will readily see that

the — 6 and 18 in the third line, and 4 8 and —8 in the
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fourth might have been. omitted ; the operation would then
stand thus:
1—242)1 —8—8 +18—8(1—5+4
-5
© 41010
. 4 ) . .
) —848 -
T 0 0
‘Which may be more concisely. written by fplaemg the terms
of the divisor in a vertical column t¢ the le
" 1{1—=8— 84 18—8
—2| —2+10— 8
: 2] . 2—10+8
first terms of dividend - —544 0 o0
quotient . 1—5+4 .
in which the several terms of each product are written ina
diagonal line, downwards and to the Tight.

Again. D1v1de2a7—6a‘+4a’~1¢“+9by2a3+
6a—10 . . :
22 00 0—6 4.—7T 049
Coeflis. | 6 —6+18—54 + 150—372 -
0 0o 0 0 0 0
10— 30+ 90-—250-{-6%
Ist terms div. _—6 + 1850 + 124—289—2560 + 629
Quotient 1—3+9 —25-1-62
Consequcntly the quotient is~
a‘—3a’+9a’—-25a+62,
and the remamder is
—289a’-—250a+629.

For further examples the puprl may solve those of art. 30,
by- this method. ) .

V180r. 10

N
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. TABLE OF USEFUL FORMULZE. =

A= (a+2x) (@ —2),

a® — 1% =(a® + ax-F2° (a—-m), ) :

@+ B=(d—az+ ) (a+2x), L

@t — 2 =(00-4-29) (%), "
| =(a"+ 2% (@ F x) (@—2x), -

a‘-—x’= &) (“‘—"'"’) =(a*+ %) (a'+a:c+:c’) (a—z
. = (*—2%) (@*—az + 2%) (a + =

=(e¢+7) (a—2z) (a’+ax+x’

- @ —azx + 2
==(d’—-:c’)(a‘+a°"a:’+z‘)
»a‘+a’x’+x‘ (a'—a:c+z’)(a'+az+wﬂ)
@ — b : . @b
a—b.=a+b . a+b—=a—b .
a’—b’_ ' a+d
a—0b —a‘+ab+b” -—W’—,a‘—ab-{-b’.,
a—b ot — b B
fgeme b _1'  opa T
a0=1’ ‘ . ‘a —&_m! am_aTm’ ) ‘a"'b =b‘.
SECTION V.
" Practions. i

83. The principles upon which the operations with alge-
braic fractions are performed, being the same as thase al-
ready employed in ‘arithmeétjc, we might at once proceed to
apply them. As these principles, however, are more rea-
dily explained by the algebraic process, we shall enter at some
fength upon a few of them: and thus perhaps remove some
dlfbﬁic\ﬂues which the pupil may have felt in his course here-
tofore

34. One of the first reductions frequently requlred in
working with fractions is to reduce them to their lowest
terms. For this purpose we first find the common measure.

The rule for obtaining. the common measure is founded -
on the fellowing principles.
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‘The common measure of two quantities, a and b, will be
a factor of the remainder that is left, after dmdmg the less
(as a) into the greater.

That this is true may be thus shown : .

Let a be contained in b, m times, leaving the remainder n.
Then we will endently have -

) ‘be==amr.

Now, since the greutest common measurg g, will measure

b and q, if we'divi

bem,r .

& & &
in wlnch — and = are integers. If, then, r be not dmslble

g
by g, we shall have an integer equal to a fraction, which js
impossible. As, then, éiﬂ an integer, g must be a factor of .

Let, now, r be divided into a, leaving a remainder v. It
is ev1d,ent that g is a divisor of . " If we thus continue the
division until we find a remainder ¢, which will divide the

,recedmg one without leavmg any remainder, then will

fe formula of the operatlon is as follows :

a)b(m.
“ma
r)a(n
nr_
rYr(p
Inte
t r)r (q‘
' ) t) rit (8 .
N .8t
Y

the last remamder being 2.
To show that £ = g, wé have the fonlowmg equatxons :
b= ma + 7.
a= nr+41r; .
r==pr’ 4. )
P qf"f-*— t. .
v = st, ’

the above equation by g, it will become
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From these .equations we perceive that r”, v/, r, @ and &,
must each be. measured by . Now, we have shown that
the greatest common. measure of @ and b, viz., g, must mea-
sure each of the remainders : it must measure ¢, and of
course cannot be greater than ¢, . And as ¢ is a common
measure of @ and b, g cannot be less than £. Therefare g =¢.

. Therefore, to find the greatest, common measure of two
numbers, divide the less into-the preater. If there.be a
remainder, divide it into the last divisor, ard se proceed
until a remainder is  found which will be containe :vactly
in the preceding divisor.. Then tku remainder is the
grealest common measure.

Th:alet the greatest common measure of 246 md 272 be
_requi

The opemuon is as follows

UG Tm(
mgyo

12) 26 (2

?) 12 (6
L 12 )
2, being the last divisor, is the _greatest common measure

We may assure ourselves of this, by resolvmg the two num-
bers into their factors. Thus: g

U6 =2.x8 x41
and, - 272=2x2x4x1‘7

41 and ‘131 being primes. ‘We thus see that 2 is the com-
mon factor. The operation may be shortened by first can-
celling any prime factor that is contained in-either number,
and not in both. - Thus, if the common measure of 1015 and
2871 were required, we perceive at once that 5 is a factor
of the first ; and the sum of the digits in 2871 being a mul-
tiple of 9, 2871 is divisible by 9, and neither of the factors
of 9 being contained in 1818, we may strike out this factor.
By this means the numbers are reduced to
. 203 and 319,

the greatest tommon measure of which is 29.

85. If we couId determine readxly all the factors which

4*
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each of the given numbers' contains, we could at once strilke
out those which did not belong to the common mexsure. To

" resolve & number into its factors, however, being frequently
more laborious than to perform the operation for finding the
common measure, in the preceding rule, this method is al-
ways to be preferred, unless the factors are at once disco-
verable from the forms of the numbers. When we are
operating upon algebraical quantities however, the mono-
mial factors may at once be determined by mspectwn, and
should in all cases be stricken out. '

Thus, if the common measure of 5 a*h*c and 7 a® x were
required, we at once perceive that 5, 7, ¢ and 2 can form no
part of that common measure. - The question is thus reduced
to finding the common measure of a%b® and a%, which is at
once seen to be a®h. - -

Again, let it be required to find the common measure of
the two polynomials i

_ - 3o 460t 4 sawe
and 8a%h 4 12 % + 12 ab* +.6 b4,

Here we perceive that 8 a* is a factor of the first, and 6 5 of
the second expression, and as these have a common factor,
38, this must form a part of the required common measure.

Striking out the factors 3 a® and 6 b, and proceeding with
the reduced expressiong as directed in the rule Art. 34, the
operation wil! be as follows :

@ 4+ 20b + 5 0¥ 4 20% + 2ab3 4 5 (a

@ + 2a% + ab?
, abs 4 b
dividing by the factor 5 :
this becomes . . e +9b) z:iibab'?'b’(“‘l'&
' Fab+ b
ab + b2,

Henceav(a+b)—3a+3b is the reqmred common
_measure, -

~

" ExampLEs. o
Ex. 1. Find the greatest common meastire of | -
12¢* —8a—4

and 20a'b-—10a’b—15ab+56‘ ‘
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. Omitting the factors 4 and 55, these expressions -are re-
duced to : : . R .

. ’ v 3a*—2a — 1

and : 4a*—=2a8—3a -+ 1.

But here we at once meet with-a difficulty. .8ince 8 a® will
not divide into 4 a% unless fractions be admitted, which in
the present case is manifestly improper, the question might
appear impessible. - This diffieulty is removez, however, by
considering that inasmuch as the common measure can con-
tain no simple factor, the introduction of such a factor into
either divisor or dividénd cannot affect the final result. In
the above case, then, we may multiply the dividend by 3,
and the.operation will stand thus : -

40 —2p—8q+1
8 A -

84_2a—1) RF—6F—0a+3 (4

. 12a*+8a'—4a
2a—ba+3
3 .
6P —166+0(2
6 —4a—2
© .. S Zile+ 11
or cancélling the factor —11 = a —1)3a°—2a—1(3a+-1
' T . '8a'—8a

a—1
a—1

)

and a-— 1'is the common measure required.

From the above investigation the following -rule may be
derived. ' . )

T find the common measure of .two polynomials, first
determine, arnd divide by the monomial factors that either
of them contairis. - T e

Divide.that one of the reduced expressions in which the
leading quantity is involved to the highest power, by the
other ; and cancel from the remainder any monomial fac-
tor that it contains. . . :

Divide the reduced remainder info-the preceding divisor,
and 30 proceed until no remainder occurs ; the last divi-
sor mulfiplied by the common divisor of the monomials
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:tnckmowfrom!hcongmalezprumma bcthcemn-

mon measure required.

If in the course of the operalwn, a monomwl remainder
occurs, the original expressions Aave no pol, tal divisor.

Slmddlkcco q'tluutuim any of the divi-
sors not be contained in that of the first term of the divi-
dend, the latter must be multiplied by such a factor as will
make the division possible in integers.

86. To reduoeaﬂ'acuonto its lowest terms, the terms of
that fraction must be dmded by t.heu' greatest -cQmumon mea-«
suré.. -

En'nus.
Ex. l Reduce +y to:tslaweﬂterms
-y JAns. - a:’______.-:ty+y
T—y -
. ab—atzt
Ex. 2. Reduce3q’+3d3z-—3a‘z’ 8a’a:‘m its lowest
terms. . a® 4 x*
’ ) Ans. e+ 3a
Ex. 8. Reduce wﬂto its lowest terms.
2 =zy? z4y
' : Ans.
) z’ zy
"Ex. 4. Reduce3a4—3a’gé+ay'—y t0 its lowest terms.
— ay+y Ans. 3a’+y
, » . da—y
Ex. 6 Reduce 2“’—0%_“ ———— to-its lowest terms.
. 2$’+3 + a® ar—a* '
. Ans. .
z+a

lEx. 6 Reduce T%': to :;1 ‘l'ow:.st te:.;s_*_ xy. y. .

1[5}:; s —HAY
-2 _x+ o
Ex., ’77 Reduce 0o 13 z'+__l_‘ to its lgwesttenns.
N .ﬂ_m'- 5z+3

$zx242z+ 1
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‘23— 162 —6
Ex. 8. Reduce. W to Jts lowest terms._ .
. Ans. § .
Ex 9 Reduce 48'z°+3ﬁ:t’y——15y' toits low-"

" A — Ry + 17 2y — 6y*
ﬂn.Ma:’+30:n/+15y'

eat terms. 122° ~ 5y +.6*
E;r. 10. Reduce 501-8’- 1,0 _:ig -};;5@ to its lowestterms
‘ .ﬂ 5a+5b
3 ’ o Bae 4 IObc+9ad+ led
Ex. 11. Refiu 60+ 9cd— 2c—3d to 1tslow-
estterms. - . . .  dns. 3; t5lb
e 9zs-+2zc+4z='_x+1
Efz. 12. Reduce 15#‘_2#_*_103, z+2to:tslow-
estterms. . 4 3z‘+z‘+l
: . a’b ’ - z*+x+2
+ 20342 ab® 4 b
Ex. 13 Reduce 5a5+10a’b+5a“b’ to its lowest
terms. P . a’b+ab’+b'
: Ans. T Bab

37 To reduce amwed number toa simple fractional

€3810R.
uzi‘he principles by which th1s is. performed being identi-
cal with those with which the pupil has already become fami- .
liar in arithmetic, require no remark here, except that when
the fraction is negative, the numerator is o be subtracted
from the product qf the mteger and denominator, instead'
of being added as is always done in anthmetw

Ex.sms.

» bt an S
Ex. 1. Reduce a—,—T to a fractien.

The operation is . a .~
" Xby a
subtract b —
Gy - b' == the numerator.
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Heneeza._b’inhe fraction required.
Ex. 2. Reduce 34‘+3+Mwaﬁaction

b

Here(3a'+z)b+4a'b 52-3a‘b+bz+4q’b 5x
o= 7 a® + bz — 6 = the numerator,

7a'b+bz 5:&: )

and the fraction is K
Ex. 8. Reduce 4az—§§b 0 a fraction. -
dns. 4——“”"/; 8ab

Ex. 4. Redupe 7x—38y +‘€i—;f toa fmctiop.

8x'—10zy + 4y
z—y ‘

Ans.

:i# to a fraction.
‘ © JAns. 22 “
o T x—a

Ex. 6. Reduce @ + 2 —

Ex. 6, Redueea'—-ﬁz+z‘— 2 to a fraction, '
) ‘ : . a4+

. : @
. - . . ' .ﬂm.'a s
7. Redice z +.y — f:ifT” t0 a fraction.
Yy— |

.88. The mode of %rfnrmmg the remaining operations
with fractions being the same as'in arithmetic, we ghall
merely annex exampl% for exercise.

Ex. 1. Reduce —5 toa m1xed. number.

}
~Ans. 6 — ab 4 4 — 2b°

' a+b
Ex. 2. Reduce w toa mixed number.
2a+43b : 5o

-Ans. 26 —2b + 5280
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6
Ex. 3. «Reduce-—a.—"'siuthmxxed number. .
. 8a*+2ax . ar — 29,

| A 2t S T Rar
A Ex.4 Reduce -—I—bi\toamxxed number

)

‘-ﬂm a‘—a‘b+a'b° a'b’+ab‘—b’+ 2%

X afbd
278 — 38 — 4a:+9a’

. Ex. 5. Red KL
8 +4x
3 ﬂm;3a+l——m—.
a 7a 2
Ex 6. Reduce ce 551 15 dg‘ﬁ to fractions having ‘a
‘common denominator. . 18a%. 2@ 8b
: ns. ,and .
12ab’ 12 ab? 2ab*
Ex. 7. Reduce a+zand a1z Zta commén denomx-
nator. : a’+2ax+z° -_—2a.1:+a:‘
. dAns. —a—m and & s
Ex. 8 Reduce :ax 3b, ud to a common de-
nominator. ’ -
Ans. 4¢t‘ag’—4'»a:z:’ 3¢’b—3bz’ md.2a’z"1+ 2ax*
- a’x‘—-— ? a’a:’- ’ @t — Tt
Ex.9 Add a.nd ‘
z'+y C
m. 2212,
Ex 10. Add3 +2a+ muiba‘+3a_2
» » . JAns. 9a+l+4a+9
j?.x.' 11. 1'*;1'9m"7a.':_..6 take 9a+3
-' A 8a—39
o ) C Ang. ———
v : . . 15
Ex. 12. From6a+8i:—g£tnk 2a +4_a-%3_a:

s

824 ar—4a*

JAns. 4'a + o
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a® + b at—b

Ex. 18. From 7 _take P
Ans 2a'b+2ab'
. o . a®— bt
Ex. 14. Collect the fractions a?:c—a.*- b Bk

a a4z
8a* 4 axr*— 2
, dns. F—azr
o . 6 7a
" Ex. 15. Collect the fractions 3 b+13a 37 into one
sum. o Jin, 120*—83a*
o ; T
Ca— a+ .
Ex. 16. Subtract 3 from 3 Ans. b
. . at - a 1
Ex. 17. Reduce to one fraction a'——z'_a+z'+a—a:'
: ar+a+tzx
.dna. —-F:'F-
_ 4 .2 4Rz
Ex. 18. Reduce 5= )'+1 3 s i=a
to one fmction. ;. ' dns 24_,_33_ 18 ¢
3+3x—8x—32¥-
r ada
Ex. 19. Reduce ( —x) a (a +.'t) o x’toa sin-
gle fraction. 4 @ 4azr+20
Ex. 20. Reduce a+z + 1 to a

v F— -2 @+tatar
single fraction. © g 2
. . dns. ;
i Cro Ty
" In solving the last few questlons, and also those which
follow, the pupil will find advantage in consulting the table
of factors at the end of Art. 32, page 39.. . -

Ex. 21 Mulnply as;f: by _alf: ’

JAns. 1.
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- 8a 62 18
 Ex. 22. Multlply a%, Eoy nd 3::”

g
/ ) _ . .ﬂm.gb.
Exm. Muluply a’+b’by:+z S
o a* 4 bs
o ST Ry
Ex . Muluply 2= 9”6";20 ppZ_leef
o o ' \z’—llz+28
, . Ant, ——
z(a® 4 2° al@a—2x
Ex. 25, Multlply 1 +z.) a,+a,£+az),+za, and
a4z ‘ B e B
ar—az* S .ﬂm.a'__#
a 2 —ax » at —a*
Es. 26. Multiply +$+ e ‘
: S O e ot
Ex. 27. Multlply +x+a+:c b Zi:;;’::;
S 8a% 4 8ax®
- =
L 3 — b9
Ex. 28. Multip! 2yt @ sandy + —2—
X. u }Py +b zy+yi y+z_y
B 2aa:-—ay—2b:c+by
Ex, 20, Divide 4x+12 by 3'z4+ 9.. o
ST ,l a . 8a
SO , - Jns. 3
e 3a:+v5" 15x+2 -
Ex. 30. Divide ¥ b by T—F"  ap
R - . Jns. .
e ., G—Db a4b '
Ex. 81, Divid by ——.
Ex, 1, ivide at b }_’a—-,b (it
: Ans.

R @+
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z—y XS —yr
Ex. 32. de b ..
Divi z+y yﬂ='+2.-'¢.v+y’

JAns. 1.

b’+bx b —bz
-Ex. 38, Dlvxdeb+ byb b+a.'
b8 o b
_ JAns. b
. s b o 24 bz ’
Ex. 84. Dl"dea:'—-sz-f--b' by = =
R ) '. .ﬂm,z+—‘.
Ly @4+ a—2 aj_:e ca—z .
Ex. 85. Dl“dea_—x+a+zbya-—w et
S T ﬂns.. a.+'ﬂ
“2ax
8ab 9as 4a
" Ex. 36. Dmde——+2+8ab +2b
' Ans 2b+§f

This example is best performed by the rule for dmdmg
polynomials.

CHAPTER III. D
PROPORTION 'AND: ‘PROGRESSION.

8. Rat:;o is the relation which two.quantities bear to
each other in magmtude It is expressed by the quatient
arising from dividing the second by ‘the first. Thus, the

ratio of 4 to b is represented _by the fmqthp-g. The ratio
of12to3is%or-i; ’ofatoBisb &c. C '
To indicate that two quantmes are compared in this man- .
ner, we write them with two dots between them.. Thus, .
4:5,12:8, a: b, &c.;. '
which are read 4 to 5, 12 to 3, a to.b, &c, .
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89. The 1st term of a ratio is the antecedent the 2d the
consequent. <

40. When four uantitics aré such that the ratio of the
Ist to the ?d is equal to that of the 8d to the 4th; they are
said to be proportwnals and the series of terms forms a
pr ortion. .

hus the ‘nunibers 8, 6, 8, and 16 are proportjonnls, the
ratio of the 1st to the Rd, and of the 3d to the 4tk being- each
equal to 2.

To express the equahty of two ratios, we write them down

with four dots (: : ) between them. Thus,

8:6::8:16; "
whlchlsmd asaxstoﬁsosztolﬁ.

" Cor. In eve - proportion the quouents of the 24 by the
1st, and of the 4th by the 3d, must evidently be equal,

So that atbize:d .
o - b d e ¢ -
and AR

may be considered as convertible expressions, both- mdwutmg
the equality of the ratios, a to b, and ¢ to d:

-~ 41. Any number of quantities s6 related that the ratlos
of the successive pairs are all equal, are proportionals. Thus,
2,6,8,9, 4,12, 8,and A form a ‘series of proportionals, the
mtlo bemg 3, Such a series is, written

R:6::8:9::4:12::8:24. .
~ 42, ‘A series of continual proportionals is one in which
every term has the same ratio to the succwdmg one. Thus,

2, 4, 8, 16, 32, &c., ..

are continual proportionals, the common ratio being 2.
- A series of continual proportionals is hkewxse saidto be
in. geometrwal pmgreamm

48. If four hke quantmes are propomonals the product
of the extremes is equal to that of the means ; and conversely,
if the product of any two quantities be equa.l to-that of two
others, the four are proportionals ; those of one product being
taken as extremes, and of the other as means.
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Thus, if a: b:: ¢ :d, then will ad == be.
Or, conversely, if ad = bc,théna : b :: ¢ : d.
For,since g:d::¢:'d, we will evxdently have

5 zwhenoe, cleanng of {mcuom,
- ad==be. .
Agam. let adnbc, then dxvxdmg ‘by bd, we have
a_c .
o 554
Oor, oo ezbirecd

-

44, If three magnitudes be in continual proportién, the
product of the extremes is equal to, the sqaare of the mean, -

¥ a:b:i:b:q thenmac =5,
a b

FOr, ) b = c, v

Multiply by b, and ge =52

45. If four quantities be pmpomonals, and any.equal mul-
tiples be taken of the antecedents, and also of the conse-
quents, the results will be proportionals, '

Ifa: b..c d, then will ma :.nb : mc nd.
For smoe—--? ‘we mll ‘have, by muluplymg by o

Or, - . ma: nb ::'me 2 nd. oo
Cor, This proposition is evidently trae, lf m.or n should
be fractions instead of whole numbers; so that the proposi-

tion might be extended to include any parts of the antece-
dents, and of the consequents :

46, If four quantities be- propomoml, the are propor-
tionals by dwwzon, that is, the difference bet\zeen the first
and second is to either term, as the difference between the
third and fourth is to the correspofiding term. -

Leta:bd::¢:d then avrd: aorb tend: cord*

* To express the difference between two guantities, when it s not
known which is the greater, the sign «~'is-employed.
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oy soen . F wobave S 512
For, since - dwehfvef_'l ‘d"l'
. . awb d
LI B
that is, . arb:b::cord:d.

‘Dividing the last equation by the following, viz., i;.'. %,
it becomes S '-'%b- = f_."i .
Or, ' arb:a:rcsr d d.

47. If four quantmes be proportional, they are proportional
by composition s that is, the sum of the first and second is to
either term as the sum of the third and fourth is to the cor-

responding term.
The demonstration of this, being | a.lmost identical w1th the
. last, can-be supplied by the student. - -

Cor. From this and the preceding art., we have
a+b c+d

b d
a+b c+4d

ard  crd.

a+b arb:ictd: cwd for,smce

d_,'fbf.b == C_‘;j’ we bgve by division

 Whence a + b : a.rb.. c+d:crd

48. If four quantmes be proportionals, they are proportion
als when taken inversely. - That is, the second is to the first
psthefourthmtothethud " . -

3

Let . - azbiic:d, o
a c . .. N
then . . T
'Whenpe' ' fwi'orb:a::dt'c.' -
. a e .

49.-If four like quantities be proportxonal they are pro-
portional when taken alternatély ; that is, the first is to the
third as the second is to the fonrth
Leta:b::c:d, thena c::b: d;a,b,c,—anddbéing
like quantities. .
b*
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For, since %'-%, we have, by multiplying by %,
a b '
' e d
Ol’, : asc:: b d

The restriction to like quantities is important, for we, can
have no ratio between any others. If, for instance, a and ¢

were not like quantities, the expression < % would be an ab-
surdity. 7 )

B0. If the antecedents in one ‘Propomon be the same as
those in another, then will one of the antecedents be to the

sum of its consequents as the other antecedent is to the sum
of its consequents.
Let

 azb:ize:d,
and aseselrf, -
Thel_xwill a:bte::c:d+f
For,wehave —ém-g'apd—eﬂl
a e ¢
Consequently +c d+f whencewereadnlyeonclude
that - ‘a b+e c:d+f.
Cor. 1. Ifwelmve a: b..q d, ' )
and ‘ e:b::f: dweslmll_mhkemnnner
have . atezbitctf:d .

Cor. 2. These results would evxdently be true whatever
.should be the number of proportions.

51. If any number of like magmtudes be pmpomonal as
one antecedent is to its consequent, sp is the sum of the ante-
cedents to the sum. of the consequents.

Let - a:b::c: dize:f:1g:h -
thenwill . &:5: a+c+z+g b+d+f+h.
For we have by alternation (Art. 49)

a: c..b d ’

e
e

o'o-@
e-a.S

aaa
amzn
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*« (Cor.2. Art. 50)a at+ctedgib:dfd4f+h
andaltema.tely,a b ta+ctetg:dbt+d4f+h

62. If - a:b::c:d, )
and : b:f::d:h,
then will , a:f:ic:h.
' a e
For we bvae : 7=d
‘ ) b d
and N S
L '_ab_._cdo’a c. -
oo Ef—-ﬁ I‘}-==x
and o a:fezh.

Cor. 1. This reasoning might évxdently be extended to
any number of propomons

‘

' C’or 2. From the above demonstratlon we have
ab: bf i1 ed: dh.
.Hence, if the oorrespondmgtems of two proportions be multi-
plied together, the products will be proportional ; and the propo-
) smonmay evxden y be extended to apy number of proportions.

53. If we have. -any number of contmued proPomonal-

abed,.. ntomterms,thenwxlla: a"“
For we evidently have a:b::a6.15 '
' azb:ibic
atbiie:d
&e.  &e.

) . . tom—1 proportlons
(C'or‘2 Art 52.} @': b"‘“ ssabe ..y _bc N
tazw

54. If four quantities be proportlonal, like powers and roots
. of them will likewise be proportlopal. :
Thus,if a:b::cid, them @ : b":: ¢*: d*;
Fot si'n'cc; : LS b_"ag_" ‘
T a_¢. . a

Or; S a:briien:dn.
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SECTION. IL
Arithmetical P .

55. When the terms of a series of quantmes continually
increase or decrease by the addition or subtraction of a given
number, such series is said o be in Arithmetical Progres-
sion.

Thus the numbers 1, 4, 7, 10.. o which increase by the
successive addition of 3 form an increasing arithmetical

progression; 60, 47, 44,41 .... which decrease by the sub-
traction of 3, form a dccrea.nng a.nthmeucal progressxon.

56. The number by w)uch the success:ve terms of the
series increase or dnmmsh is called the common difference.

87. If a be the: first term’ of an amhmetlca.l progressmn,
and d the common difference. * Then the series will evi-
dently be ..
if increasing @, a+d, a+2d, a+38d, a+4d,. .
if decreasing @, a—d, a—2d, a —8d, a—4d...,

ﬂ¥ the inspection of the above series, we find that the
cient of d,1in any term, is a niumber less by umit
the number of the term in the series. Thus the coe cLent
of d in the fifth term is 4, in the sixth 5, &¢

- The nth term will therefore be .

ek (n—1)d.

In general we omit the double sign. This will lead to no
-want of generahty in the results, if we consider the common
difference in a deoreasing series, negatwe. .
68. The sum of the extremes is equal to the sum of any
two terms equally distant from them. .

Let a,a +d, a+2d . a+(n—3)d,a+(n—2)d
a+ (n—1)d, be a series of n terms. - The sum of the ex-
‘tremes is )

2a + (n-- l) d’

And this will evidently be the sum of ' any two terms
equally distant from them;’ and, likewise, twice the lmddle
term, if the number of terms is odd.
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. N ,
59. This being the case, the sum of the series must be
equal to-the sum of the extremes multiplied by half the num-
ber of terms.

So that if S represent the sum of the. series, a being the
ﬁrst, and lthe last term, we shall have
. S (a + l) 3
This prop_oaiﬁon_ may be ,ot.herwlse demonstrated. Thus,
. putS=a+@+d)+@+2d)+ .. . L
-~ Writing the same series in an inverse order, we have
S=l4+({l—d)+({l—=2d) . . v .. .a
Addirig this to the former, we obtain .
T, 28=(a+])) +(a+l) s oo ton terms

==n(a+ ),
and . ‘8 -a—— (a4 D).
Or supplymg the value of l,» y i
_ 8=-—(2a+(n-—-l) d) A
'I'lns equatxon and the.following, .
o ‘A=a+@m=1d .~ . (B

contain the whole theory of arithmetical progression.

Thus, if the first term, the last term, and the number of
terms, are.given to find the common dxﬂiarence, we hnve,
from (B), ' <

. - d l—a
“a—1

~

Exnm.ns.

Ex. 1. The ﬁrst term is 5, the common dxﬂérence 10, and
the number of terms 50. - Required the sum of the series ?

Here' lna+(n—l)d 5 + 490 = 495,
and (a+l)—25(5+495)=-l2500

Ex. 2. A car, dewend.mg an. mclmed plane, moves b feet
the first second, 156 the second, 25 the third; and so on, in-
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creasing 10 feet every second. How far will it move in a
minute ?

Here a-5,d=10,n=60.
o 8-—(2a+(n.—1)d)=30(10+590)
= 18000 feet =3 % miles.

This would be the rate down a plane whxch descended
five feet in sixteen. No allowance being made for friction.

Ex. 3. Insert 10 anthmetxcal means between the num-
bers 3 and 58. -

As there are 10 means there are 12 terms. Hence, the
formula :

: . l=at(z—DNd
becomes " 8=8411d
o d=5.-

And the'means are
8, 13 18,23 28, 33, 88,43 48, and58.

Ex. 4. The sum of. a series, the first term, and the com-
mon difference beirig given, to find the number of terms.
This may be solvedgl by the equation -

S=2QRa+(n—1)d) -

(n*—n) d :

: 2

clearmg of fractxons and tmnsposmg, R
nd 4 (2a—d)n=28,

a quadmtlc equation, which we are mot at present in a .

situation to solve See Quadratzc Equatwm.

Ex. 5. What is the sum of the odd numbers
. 1,35 ..... .tolﬁOterms? . ﬂmm

Ex. 6. The first term is 800, the common difference
~—4, and the number of terms 80 “What is the sum of the
senesl . . . ) ﬂm ‘726&

’=na+

Ex. 7. The ﬁxst term is 3, the cormon dlﬂ'erence '7, and
the number of* terms 16. What is the sum of terms ?
, +Ans. 780.
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Ex. 8 One hundred stones are placed in a straight line,
at the distance of 8 yards: the first being 5 yards from a
basket. How far will a person walk who: bring-them
one by one to the basket. ©~  ns. 17 miles and 780 yards,

. Ex. 8: Insert 5 arithmetical means betwgen 12 and 30.
. 4ns. 15, 18, 21, 24, and 27.

.Ex. 9. A man being anxious to purchase a horse offers
1 dollar for the first nail in his shoes, 4 for the second, and’
so'on in arithmetical progression. Now there being 8 nails
in each shoe, what will the horse cost him?

o ' ’ - * Ans. $1620.

Ex. 10. The first term is , the common-difference is 3,

and the number of terms 80.. What.is the sum ?
o R Ans. 165.

Ex. 11. ‘A and B start on a journey. A travels uniformly.

40 miles per day. B.goes 17 miles the first day, 20 the

second, 23 the third, and so on in arithmetical progression.

How far will they be apart at the end of twenty days? .

E ' ' " Jns. 110 miles.

Ex. 12.- What is- the 16th term_of thé_ series 15, ﬁ,
" \ e

: 3
%, &c., and the sum of the 16 terins - o,
- /ns. 10, and the sam 200.

Ex. 13. What is the rith term of the series %, 2—. g—, &c.,

and the sum of the n terms? .

1) B 1 1

» /ns. nth Ferm g and the sm sgn + ry ns,

~ Ex. 14. What is the nth term, and sum of n terms of the
o n—=—1 n—9g. : ' ’

series ——, , &c. 2
n n .

Ans. nth term = 0, sum =

n—1

: 2
Ex. 16. The first term. is n®—-(n—1) and common

(liﬂ'er_ence is 2. What-is the sum of 1 terms?

Anas. nd,
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From this example it follows that 8.4+ 6=, 74+ 9
+11..a-,13+15+17+19—4», 21+2s+25+zz
+”-5‘,&¢. N

BBOTIO& 118 -

60. A series of numbers mcteaslhg by a common multi-
plier, or decreasing by a common divisor, is said to be in
geometrical progression. Bee Art. 42.

Thus, the series - 2, 4, 8, 16,
and also 729, 243, 81, 27, ,

eometrical progression, the former bemg an increas-
ang the latter a decreasing series.. ‘ )
general the series
a, ar, ar’, ar®, &c., -

will represent any geometrical progresslon 88" r may be
taken ul:tegml or fractional. ’ . y

61. The common mulupller ris called the ratio, winch is
a proper fraction if the series is-decreasing,

62. The nth term of such a series is endently of the form
. l =ar-' .

63. To find the sum of n terms of th_e _.«:eriesJ,\assume .
SB=ar-'4ar?,......a +ar +aq,
multiply by #— 1; and this will become,
(r—=1)Smar"—a=ga(—1).
a\(r‘—l) l—a .
cr—=1 r—1

.
oe

«
»

(4)

64. If the series is decreasing, r is a proper fraction, and
we shall have . - ;o
S— a(l—r) a—rl '
= 1 - r = le=r

{B)
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65. These formuls give the followmg rule for snmmmg
a geometrical progression.
_ Raise the ratio to a power indicated by the number of
. terms; divide the difference between this power and un
b;{ the difference between the ratio and umty, and mult:pr/
" the quotient by the first term.

- 66. To find the ratio we have . .

mt _t_ SR
R

or _ o r = "\l;. (SeeArt 88)

Ao - (r-—l) S =ar—a..

‘Whence . ar—Sr=qg—8.

* This last equation ean only be'solved'in; particular cases.

-67. If a decreasing series continue to iufinity, the last
term is 0, and the [ormula (B), Art. 64, becomes

a

’ ExamMpres: -

Ex. 1. What is the sum of the. ﬁmt ten terms of the
series 3, 6, 12, &c. ‘

Here’ . a=3 r=2,andﬁ=10,
o 1"::2“::1024,. .
ad - S=a I:%l—sxloes=3069

>
. Ex. 2. The first’ tenn is '7‘8732 the number of terms 8 and
the ratlo §. "What is the sum of the series ?

1
= -1 = ==
Here‘ l ar- 78732 X =wes Y5} 36,
d (B) 8= _’:’ - kL "32;'12 — 118080.

Ex. 3. What i is the sum of the seriés 1, }, 3, 9y ad in-
finitum ? -

Here x =} Hence (C) 8 =T—L = ,.
3
' 6
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Ex. 4. Insert 2 geometric means between 7 and 3584.
As there are 2 means there will be four terms.

Hence (66)r=y~_y§_5_84-y512_8

and the means are 56 and 448.

Ex. 6. Whnt is the sum of the series l—-i +i—n
ad infinitum? -

Here r == —j and 8 =14.

Ex. 6. Requxred the sum of 11 terms of the progression
8,9,%27,8l1.. . JAns, 266719.

Ex. 7. Required the sum of the seriep 1, 4, }, &c., to' 16
terms, '
_ A, 13334484

Ex. 8. A person wishing to purchase a fine horse was
told he might have him, if he would give 1 mill for the first
nail in his shoes, 2 for the second, 4 for the third, and so on.
What would- be the price of the ‘horse at that rate, there
being 8 nails in edch shoe? . Ans. $4204967.296.

Ex. 9. Required the sum of the series } —i+
&c., ad infinitum. o .';T

. Ex. 10 Reg::red the sum of the first ‘ten terms of the
series 1,-4, §, &c. . -
. Ans. 19884,

Ex. ll. Insert four geometric means between9and 9216.
- Jins. 86, 144, 576, and 2304.

Ex. 12. What'is the sum ofl—}+}—,.,+ﬁ- &c.,
ad infinitum? s. 3.

Ex. 13. What is the sum of l+;}+§+&c ad- infi-
nitum ? Ans 2

Ex. 14. What is the sum of the series 100, 40, ’16 &c
ad infinitum ? ' . /Ans.. 166§-
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" Ex. 18. What is the sum of o¥ — bz + %—-&c., con-
tinued to inﬁnity‘! ‘ (See An.-'$9.)- o Ane =2
a:% + b

Ex. 16. Insert three geometnc means between } and 9.
\ Lo -~ Jns. 4,1, and 8.

- Ex,.17. Insert three geometnc means betwen 89 and
3159 dlso four between 3.and 512. :
© JAns. 117, 351, and 1053, and2 8, 32, and 128.

Ex. 18. What is the sum of n terms of the series a, b,
b’ b‘, &o.; and also of the same series: contmued to infi-

e |
nity ? 4,@;. .Su.m of ;he terms %_—,, to inf. 42—
- :?_*_.— ’
SECTION IV.
Hmomcal Proporhon. .

J .
68 Three quantmes are smd ta be in harmamcal propor-
tion, if the first is to the third as the difference between the .
first and second i$ to the drﬁ'erence between the second and

" third.

Thus, ifaze: a—-b b-—c the magmtudes a, b, and .
-€ are in ‘hazmenical proportlon, .

69. Four quantmes are in harmonical proportlon where
the, first is to the fourth as the difference between the first
and second is to the difference between the third and fourth.

Thus,if a: d:: a—b:c—d,a,b, ¢,and dare in har-
momcal propomon -

70. A harmonical progresswn is a series, any three con-
secutive terms of which are in harmonical proportion:
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71. Let a, b, and ¢ be three quanuues in barmomcal pro-
portion,

then a.c..a—-b.b-—c,_
or (Art. 43,) ab—ac = ac—be,
) ab + be=2ac, .
2dc
whence ) N =la+c.

72. The rempromls of any series in-harmonical progres-
sion are in arithmetical progression.

Leta,b c,d ¢, &c., be in harmonical prog'resslon,
1111

the nwﬂl—, Pode &c., be in arithmetical progression,
2Lac 2bd 2ce .

forwewxllhaveb:-a+ b+d’d the s &C.y
dlvﬁmg by 2 and inverting we have -

2 a+c 1+__ .

b ac -

2 b4d- 1 1

c= b5 “vta

2 c+e -1 1

2=T"z+?

1'111

therefore ridary 2,&(: are in arithmetical pmgres;non. (88)

Thus_the numbem &, 3, i, $ }, (or bnngmg to'a commion
denommator, and using the numemtors) 30, 0, 15, 12, 10,
ate in harmonical progression.

Nore-—When five strings of equal wenght and tension
have their lengths as the above numbers, they will vibrate .
80 as to make.the most perfect harmony they can produce.
Hence the name Harmonical prog‘nuum

73. To finda harmomcal mean betwcm two quanMec
a and'c.
If b be the mean, we must have (Art 71)

"Rac!
a+c
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74. We may, by article 72,-insert any number of har-
monical means between two given numbers ; it being only
necessary to find the same number. of arithmetical means
between their reciprocals, and then take the reciprocals of
the results. .- .~ - o C

Ex: 1. Find the harmonical mean between 15 and 85.
- Here'the reciprocals are I_Bfnd 35

Their half sum being ;- the required mean is 21,
- 2ab - 1050 ..
~ Ex. 2. Insert three harmonic means between 35 and 315.
' 1-_ 9 1

_ . - 1
_ Here the reciprocals are —and d'3T5’

3% 315 * 317"
the three arithmetic means are, consequently,
7 5, 8. 11 d1
- s ™= m a0
and the harmoni¢ means are E
N ‘ 45, 63.and 105.

Es. 8. What is the harmonic mean betiween 119 and 170?
. . .‘-\‘,‘ . N .ﬂm.l40.-
Ex. 4. What is-the harmonic mean bétween 75 and 9317
: ) o ' ~ Jns. 834,
Ex. 5. Tnsert two harmonic medns between 15 and 81,
o -~ Ans. 203}, and 323}
- Ex. 8. Two consecutive terms of a harmonic progression
are 5 and 9. Continue the series. . . . ./Ans. 46.
' and proceeding backwards; 3¢, 21, 2}, 13, &ec.,
45 being the largest number of the series.

- Ex. 7. Oontinue the harmonic series, two consecutive terms
being 21 and 60. Ans. 60, 21, 1241, 9%, T4%, &c..

[N
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SECTION V.
. Permutations and Copbination.

76. It is evident that two quéntities, as @ and 3, may be
d in two ways, viz., @b and ba. If there age three,
a, b and ¢, they admit of being. laced in six different man-
ners, viz., abc, acb, bac, bea, cab and cba.
These different arrangements are called Permutations.
The determination of their number is the ob]ect of the pre-
sent section,

76. We have seen that two- antmes, a and b may be
arranged in two orders, either being placed first. If we
have three, a, b, ¢, either of these may be written first, and
the remaining two arranged in two orders, so that we shall
have 2.3 for the number of permutatlons of three quantities:
Thus we have -

.a be, ba ¢ab
a cb b ca ¢ da.

If we have four quaftities ; either belug written first, the
number of permutations of the remaining -three is 2.3.
Hence the whole number of permutations of the four quan-
tities is 2. 8. 4 =24.~

Thus, -  a bed b acd .cabd d abe,

‘ a bde badc c-adb d ach
_achd bead cbad = d bac

h cacdh . b eda cbda. d bea.
' ‘adbe b dac .c dad d cab .

a decb b dca cdba-dcba

In hke manner we shall find thé number of pemmuon: -

of five numbers to be 2. 3. 4. 6 = 120,

and so on, as in the following table,
Number of permutations of 2 qunntmes =2
. “ = 2.3 '
. =284

“ = 2345

S A a®

« 2348 et
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L .Ex,:AMP'Il.Es. )
‘Ex. 1. Required the number of orders in whichfive per-
sons can arrange themselves at table ? Jne. 120.

Ex. 2. How long will it require ten persons to arrange
themselves in all possiblé orders, provided it requires five
minutes to make every change; reckoning twelve hours per
day? /ns. 69 years, and 15 days.

. Ex. 8."How man.ybnumbers, ea.cli'éonmining nine ﬁg:ures,
all different, can be written with the nine digits 1. .. .. 97
. . ' 7is. 362880.

77 In the precéding _-articie, we have determinéd the
number of permutations of n quantities, using the whole
namber each time.” In the present we will show how we
may obtain the number when taken p at a time.

Let a,b,¢,d...... be the .quantitiés. = If they are
taken singly, the whole pumber of permutations is evi-
dently n. ’ . o

Now, since each of the » quantities may be placed before
every one of the remaining » —1 quantities, we have for
the number of permutations of n quantities taken two at a
time, ) :

n. (n—1).

Again, each of these n. (n— 1) arrangements of two at a
time may be placed before every one of the remaining n—2
quantities ; so that we shall have .

) n. (n—1).(n—2)
permutations of n quantities taken 8 at a time.

Proceeding in this manner we shall find that the number
of permutations of n quantities taken .
2atatimeisn.{(rn—1) - -

« «qn (n—1)(n—2)
« wn.(n=1){n—2).(n—3)

w wg. '(ﬂ_"l);(n__,z’).(n—s) ..... (n—p+1)

« wn.(a—1).(n—2).(n—3)....8.1
which last result evidently agrees with last article.

:n-‘uuhw
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78. In article 76 we have supposed the quantities to be
all different, If, however, a be repeated twice, every ar-
nngementwrllbefmndtwwe.. Thus,xfandbbeeqml,

the arrangement-

acbd, &c
is the same as © bcad, &e.
hence the number of different perumm,uons is
. n (n-—_l) ...... 2.1
. : P) :
If one of the qunntmes be repeuted,s times, the mumber
will be ol Gt FESIE IR Y

In like manner, if one quantity be repeated a times, ano-
ther b times, and a third ¢ times. The number of permum-
tions will be

n. (n— Dnr—2..... 2.1
12....¢.12....5.12....¢ -

' T
Ex. 1. How many permutations of 5] quantmes may
be made from 10 different opes ?

Ans. 10x9x8x7x6— 30240.

Ex. 2. How many different numbers, each contammg four
figures, may be formed of the nine sxgmﬁcant dlglts ?
JAns. 3024.

Ex. 8. In how many different manners may five letters
be selected from the a]phabetl Ans. 7893600,

Ex. 4. In how many ways may the ﬁgures of the number
86376 be arranged‘f .ﬂm, 30.

Ex. 5. How many ways may the letters in the word
Philadelphia be arranged ? Ans. 14968800.

Ex. 6. How many numbers, each of six ﬁgqres, may be
formed of the dlgﬂsm 368136? ‘ Jns. 60.
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79. The combinations of any number of quantities taken
p at a time, are ‘the number of ‘selections that can be made.
from these quantities, irrespective of the order in which they
are placed..

Thus abe, acd, bac, bea, cab and cba form slx permuta-
nons, but only one'combination.

80. Now, since the number of ' permutations of » quanti:
txes, taken p at a time; is (Art. 77)
on. (n—l) ..... .(n—p+ 1)y

end the number of permutat:ons of P quantities amongst
themselves is, (Art. 77

_ j (p—l) ..'...1;
the number of combinations of n quantities, taken p at a time,

.o n.(w—1). ..‘(n-—p+1)
p-(p—=N.... 1

Exutms

Ex. 1. In how many different ways may a flock 'of ten
sheep be selected from a drove of 501

Ana 5049484‘7464544434241
. '1234.5678910

- 102722’78170.

Ex. 2. In how many ways can five steers be selected
ftom a drove of thmy'! i .ﬂns 142506.

Ex. 8. How man dlﬂ'erent combinations of seven letters
may be made from, the alphnbet? Ans. 667800.
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CHAPTER 1V.
INVOLUTION AND EVOLUTION.

81. InvoLuTION is the process by which we determine the
power of any number. - As the power consists of the product
of a number of factors, each equal to the root, it is plain that
its value may be determined by multiplication ; but as the pro-
cess becomes tedious when the index of the power'is large, it
is more convenient to employ the following formula for the
purpose. This formula, which is called the binomial theo-
rem, wascdiscovered by Sir Jsaac Newton, who appears to
have arrived at it by induction, as he has left no demonstra-
tion of its truth. o '

Let 2+ a be any binomial. Then
(a:+a)'=z'+nz‘_"a-l:n. n—1

D)
) ”;2 2= a8, &e. -

To investigate this formula, we qh'zﬂl eonsider the product
of the factors ‘ ‘ ’

(2 +a)-(z + B).( + ¢).( +d), &e
Fint, (24 a).(2+}) = z'+g Ia:»+ ab.

~s ‘n—1
z'"a’+n o)

"(z+a).(q:+b).(z'+c)=$:'+: 2+ ab a:+a'b¢.;.
o el ‘bcf

(z + a).(z + b)(= + ¢).(z+d).

o =24+ a|a* + ab | 29+ abe

b ac abd

el ad bed

s dy. be | acd |

bd|

. cd

In which the coefficient of the second teﬁn is vthe sum of
the quantities a, b, ¢, d, &c. The coefficient of the third

z+ abed.

\
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term is the sum of the products of the same guantities taken
two at a time ; that of the fourth is the sum.of the products .
. of Lhe same quantities taken three ata nme, and 80 on

82. We might from ana.logy conclude t]mt this would
always be the case; but that there may be nothing arbitra-
rily assumed, suppose the fact has been proven for n factors,
we shall ‘prove that it ‘must likewise be true for n 41
factors.

Thus, let : o ,
(x+a) (z+0) (a:+c) ceo(®+n) :
=gz"+a|x""+ab|x*~*+ abc a:"—'+ abcd
b| - ac abd

] ad) ‘
n an abn

If we x;}ultiply this by another factor, :we shall have
(z+a)(@+0)....(x+n)(z+p)=

z ¥V fal|atfablar—"' 4 abc|a*—24 ... abed.. . nx.
b at abd ’
¢ ad 3
d s H
‘n|  en|  abn-
N 4
" 4pzr4ap|zt='+ abp | 2*—t.... +-abed ... np.
“bp . alcl{. o .
:il' aap | - C
np ' anp | .
- &)

Now the second coeﬂiclent is endentl the sum of the
n + 1 quantities a, b, ¢,.... p;-and fy wé examine the
third we shall perceive that it is formed of, 1st, the sum of
the products of the n quantities, taken 2 at a time ; and, 2d,
of all those combinations, 2 at a time,. in whlch the new
quantity. p can enter. .

g4 -

[T
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The fourth coefficient consists, Ist, of all the combinations
of the n quantities, 3 at a time ; and, 2d, of all their combi-
npations, ¢ at a time, united with the new quantity p. Con-
sequently, it is composed of the sum of the products of the p
quantitieg taken three at a time, and so for the subsequent
coefficients. Hence the law holds good. C

83. This being admitted, it is evident (Art. 77) that the
number of terms
inthesecond_coeﬁcientis n,

in the third « n.nz—l) _

. o n.(n—1) (n—2)

in the fourth A 23 f

. « ‘n.(n—1)(n—2)(n—3)

in the fifth 2.3 4 , &c.

84. If we suppose t é quantities a, &, ¢, d, &c., to be all
equal, ab, ac, &c., is each equal to @, )

abe, ade, &c.,’ “ a,
and we shall have

(-’0+a)"==1"‘+ﬂ31$'-‘"‘+ﬂ- n_;;l @'zt 4
n.(n—1)(n—2) , _ ,
g e e .

The above demonstration is-evidently confined to the case
in which n is an integer. This being. as much as was re-
uired in this part of algebra, it was thought proper to leave
e more general demonstration to be given in the second
part, which see. . ,
85. From the formula of last article we obtain the follow-
ing rule for involving a binomial.

The first term of .the power is the first term of the root
involved to the given power. ,

The literal parts of the succeeding terms consist of the
successive powers of the first term of the root,.regularly
descending, joined to the successive powers of the second
term, regularly ascending. . o ]

The coefficient of the second term is the index of the
given power. That of the third term is obtained by mul-
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l?lymg the coefficient of the sezond term by.the index o
that power of the first term of the root contamed in aa;d
term, and dividing by 2. -

Jnd in general the cogfficient of any term i3
mubltiplying the coefficient and index: in the preceding term,
and ividing by the numbcr qf terms to that place.-

) Ex.mm.ns
~ Ex. 1 Bmsea+xtothe5thpower. 4
"Here (a+z)5-a‘+5a‘x+10a’.z'+10a'z‘+5az‘+z’.

2)20 s)so 4)20

10 10 6.
Ex. 2. .
(a—:t)'==a’—6a’m+15a'z‘—ma'a.‘+15a°x'—6az'+z‘.
6 4
-2)30 3)@.
] X 15 20 .

Ex, 8.(b—22) = b7—7b* (2) + 21 b* (22)'— 35 b4 (3 2)#
+ 855° (220 —21 b° (R2)* + T b (22)*— (2 2)7
= 7 —14 5% 4 84 b*zs — 280 b'z® + 56011’3‘—6726’:2‘
¥ 448 bz®— 128 7.

Ex. 4. Rm.sea-—ztothe 4th pOWer
Ex. 6. Raise a— b to the 9th power.
Ex. 6. Ra;sez—:cwthe 5th power.
'Ex, 7. Raise 2¢ 43z to the4thpower
Ex. 8, Raise 3w+yto the 5th power.

86. The prmclple contamed in last article may readxly be
extended to a trinomial. Thus, . - )

Let it be required to find the 4th power of a +b—c.
Considering b— ¢ as a single quantity, we heve
-(@+b—c)tm= (a4 (b—¢)) =a+4a® (b—c)+6a'(b—c)'
+4ab—cr+ (b—c)‘ and
7



™ JINYOLUTION AMD EVOLUTION.

- .
+4a(b—c +4a'b—4a'c '
=< 4 6 a* — 12 e + 6 e

+6a(b—c
+4a (b—e +4 ab*—12ab'c + 12bc*—4 ac®
+ (d—¢)* 40t — 4b‘c+66‘e’-—-4bc'+c‘ .
. - (a4 d—e)% .
. Exawpres.

Ex 1. Rmsea—b-}-ctothe&lpowet. .
Jns. {a’ S ah +8ab*— b 4 Ba'c— 6abc
+8act 4+8be—8be 40 )
Ex. 2. Raise 2a—z 4y to the 3d power..
Ex. 8. Raise 2y — z 1o the 4th power. .
Ex. 4. Raise 2a—3b + ¢ to the 3d power.
- Ex. 6. Whatuthecubof:-—fly-{-z! .
Ex. 6. What is the 4th power of 4a+42b—c?
Ex, 7. Whatis the 8d power of 82*—8 2 44?
Ex. 8. What is the 4th powerof 1—2a+ 2°?
Ex. 9. Wlxatjs.theé?ﬂpowerofa‘—Gax-Q-Qz“!' ,

SECTION I
Evyolution.

§7. Evolution is the extraction of roots, or the determining
of a number which, multnphed by itself a given number of
times, will produce the proposed number.

The square root of a number, is a number w}nch being

.squared, will produce the proposed number.

The cube reot of ‘a number, is one which, bemg cubed,
mll produce the proposed number.

As evolution is the converse of mmlunon, the rules for
performing it wxll readily be derived fram those of the lat-

ter rule.
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In raising a number to a’given power, we multiply its fn-
dex by that of the power to which it is to be raised. Thus
(@) =ar*5=a" Consequently, the fifth root of

a® is a"")' a. -
Again, the - third power of 5a’1° is 125 a‘z', conse-

" quently, the cube root of 125 a%* is 5 a¥t =5 a2".

Hence, to obtain any root of a monomial, we first extract
the root of the numeral part, and multiply it by that of the

. literal portion, determined by dividing the indices of the dif-

ferent quantities by the proper numbet

88. Def. To indicate a root of number, we preﬁx the
sign +/ with the index of the root upon it. Thus: .
_ Yz.or /2 is the square root of z.
2 is‘ the cube root of = .
Jx . is the fourth root of x. -
When the Toot of a ponnomml is to be expressed, the quan-
tity must have a vinculum ( ) placed over it, or be
enclosed within brackets ().

Thus vas+a* or /(* a:‘) represents the squate
root of @+ 2°; while y/a* 4 a* signifies that the square
root of @ is to be added t0 2°; ; and is therefore exactly equiv-
alent to 0 4/

89. It has been shown above that the iridex of the root is
obtained by dividing that of the-power by the number which
expresses the root to be extracted. Thu,s

- ST Jrris zi‘ =
' ‘ Jrvisx ¥ =% :
This leads us to a nota.tlon ‘for roots, of great iise in algebra,
for we see that a:'i Jathe square root of the fourth power of &.

« 27 s the cube root of the fifteenth power of z.
the denominator-of the fractional index expressmg the root,
and 'the numerator the power.

"Thus /a and at are convertible expressions, both mdl-.
catmg the square root of @. In the same manner ya" is the :

sime as a¥, & yabis the same asa? and in general {/a* =
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‘What is the square root of 49 a**?
Here (/49 %zt = 4+ T a¥x¥ = 4 Ta'x*.®

Exawrizs.
Ex. 1. What is the square root of 81 a*z*? -
dns. 4+ 9 a*z>.
Ex. 2. What is the fourth root of 16 a®%y=? .
Ans. 4 2a'yc.
Ex. 3. What is the fifih root of 1021 z5y*?
dns. 4 zy*.
Ex. 4._What is the cabe root of —729 z%y™?
dns. — 9 2.
. 8ty
Ex. 5. What is the cube root of — 27a‘!
2ty
Ans. — g
Ex. 6. What is the square root of 9 a*z ?
Ans. . -3t

Ex. 7. What is the cube root of 343 a°z%? .ﬂm.']a‘gF .,
Ex. 8. What is the fifth root of 243 gz ?
Ex. 9. Wlmtxsthefoutthrootofﬁzsa‘z‘!
Ex. 10. Whnt is the cube root of 216 a®5*?
Ex. 11. What is the square root of 81.a%z®?
Ex. 12. Multiply V16 ¢°2* by /8 a%2®. -
Ex. 13. Divide &/32 'z by v/ 64 2°,

' & oriatz—t
.dm.:!:llzdor‘z»az .

* The square, or any even root of a number, may bave either the
ql'::or minus sign ; but any odd root is affected by the sign of the power. *

even root of a NEGATIVE humber is unpuuble-—(See Imaguurg

Quantities.)
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Ex. 14. Extract the cube T00% of — 27 a2 ",
Ans. —8 vz-f’

_' Ex. 18. What is the value of /81 a'z~b+1
Ex. 16. Multiply &/ —27 oz ~* by ﬂﬁﬁa-'aﬁ’.
Ex. 17. What is the mth root of @ b1
Ex. 18. What i is the nth root of a* b*c1t .

SQUARE ROOT OF POLYNOMIALS.

90. If we examne the square of the binomial a + 2, or
a* + 2 ax + x%, we find it to consist of the square of the first
term, twice the product of the two, and the square of the last
term. If, then, we deduct the square of the firgt term of
the root, the remainder, 2 ax + z* or (2a + z) Z is com-
posed of the product of the second term, and. twice the first
term plus the second.

To find the first term of the root, therefore, we must fake
the root of the first term of the power. The remainder.
being divided by twice the dﬁrst term plus the second, will
gwe or uouentﬂzc sécond term of the root.

%ole process may be arranged as follows,

' a’+2aa:+:¢'(a+z

2a+x )2ax+w’
2ax 4+ 2°

The rule may be expressed thus:

Exm ng -arranged the terms. commmmng with the k:ghf-
; wer qf one of the quantities, -
ake the aquarc root of the firat term for the first term

of the root. Subtract its square from the given guantity,
and set.doton the remainder, for a dwzduaf1

Divide the first term of this dividual by twice the ascer-
tained root for the next term, wluch place in the'root and
also-in the diuuor : - .
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Multiply the divisor thus completed, by the last found
term of the root, and subtract the product from the divi-
dudl, and so proceed.

The student cannot fail to notice the comcldence of this
rule with the one ordinarily given in arithmetic ; wlnch rule
is in fact denved from the algebraic formula.

b ExawpLES.

Ex. 1. What is the square root of
P—4 2% + 6 2P — 4 2y* + Y- :
-’;“—41“y+6¢‘y’—41‘.'/'+y‘ (#—22y+y

22*—R zy)— 42y + 62y

‘ -—4z"y+4a:‘y’ ’
229 —~dzyty* ) 20y —4xyty*
. 2 a4 — 4y + 3

- Ex. 2. Extmctihesquarerootof'4a'+20dz+25z’

Ex. 3. Extract the square rootof4a‘—ﬁ)a’x+37a’a:’
—~380az* 4924

Ex. 4. Extract the squm'e root of 9 24 —122* — 2a*
+4zx+1.

Ex. 6. Extmct the square root of 9 a*—36 a'z+72«z'
+ 36 2+,

Ex. 6. Extract the square oot of
.2 — 6am‘+15a’.'t‘ 20a'z‘+l5a*x' 6a‘z+a‘.

Ex. 7. Extract the square root of
92¢ —122°+ 1024 — 2B * + l')’z‘-—'r-Sa:-}- 16.

"Ex. 8. Extract the square root of ' :
160* +8ab —8ac+ b*—2bc + ¢ .

" . Ex. 9. Extract the square root of 1+ z.
@ x» bat

‘T"‘:"' 1"5% gtie—im T %
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Ex. 10. Extractthesquarerootofa’+2b :
B b b
Ans. a+

2a’+2a‘ 8a7+

Ex. 11. Whatmthesquarerootof )
1 . b 1 1
Z”"”""'Z”“F’""TE “1° Tt

Ex. 12. What is the squafe roét of

;a-.‘ aab+ 0 yps -—ab=+m

,AEx,.l3 Whatl,sthesquarerootof2 orl 412 .
.ﬂna.l+-, 45 — 5 F &e.

~

Extraction of the Cube Root.

91. The cube of a + z, being a’+3a’z+3a:c'+a:’~
if we omit the first term a®, the remainder, 3 a%z+8 ax®+42*,
may be written (3 &% 4 3 ax 4 29) x x. Now, z being the
‘second term of the root, the divisor must be3 a® 4+-3 ax + 29,
which consists of three times the square of the first term
of the. root, plus three times the product of the first and se-
cond terms, plus the square of the second term.

* The following rule_evidently includes the various steps
to a.mve at the root req(nred, viz.: .

) Rm.n.

dArrange the teims as in the square root, and take the
cube root % the ﬁrat term for the first term of the_ root.
Subtract & this term from the given power, and
the rcmamder wz be the dividual.

Take three times the square of the gscertained root for a
trial divisor, by which divide the ﬂrat term of the dividual
Jor the next term of the root.

Complete the divisor; by adding thereto threc times the

product of the two terms qf the root, and the square of the

t term. :

Multiply and wbtract, and 10 proceed until the opera-
tion i3 completcd.
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Exanrres,

Ex. 1. Extract the cube root of R
28 4 6 28 —40 2* 4- 96 r— 64,
2462 —402°4+-962—64 (2*+22—4
z )

9324462 +420 ) +6z*—302*
7enderl. 62*482* 4625412244828

3 F 1207+ 128 )—122*— 487496 2—64
—122'—242+16 —12 2*—48 2+ 96 z—64

The second trial divisor, 8 20412 23412 2%, is equal to
8 (z*42 x)*; and is completed by adding 8 x—4 (x*+4-2z)
+ (—4)*. The complete divisor is therefore 3(z* + 2x)* -
8x—4(x* + 2z) 4+ (—4)% and conse(Lueemly is formed pre-
cisely as the preceding one, z% f %z being considered the
first term of the root.
. The trial divisors subsequent to the first may be found
without the trouble of squaring the ascertained -root, by
adding to the last complete divisor, the product and twice the

uare which were employed in completing said divisor.
Thus in the above example 8a2* 4 122° 4 122 =8 a¢
462 +4254 62+ 82% . .

The above rule is identical with that employed in arith-
metic, except that 80 times the product of the last figure,
and those found before, is used in completing the divisor.
This change is rendered necessary by the decimal notation

... employed in arithmetic.

Ex. 2. What is the cube root of - -
43 0% 48 ab+ 5948 %+ G abe-}:B deo+4-8 bet-+ 8%+

The second trial divisor (see form, on opposite page
3a* + 6ab 4 8bis equal to 3 (a 4 b)*, but may be foun
by the directions contained in the observations appended to
last example. The quantity added to complete it, viz:
8ac+8bctc=8(@+d)c+c. . -
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Ex. 4. Extract the cube root of
8a* 4 12a% 4 6 ab* 4 b*.
dns. 2a + b.
Ex. 5. Extract the cube root of -
° 27 a®*— 54 o’z 4 36 a*x*—8 a*2*.
Jdns. 3 a*—2azx.
Ex. 6. Extract the cube root of
820 —386 2* 4 114 z*— 207 z* 4 285 2* — 226 x 4 125.
dns. 22*—8x 5.

Ex. 7. Extract the cube 100t of
8 a*—36 0" + 12 a% + 54 ab* — 27 b*— 36 abe + 27 bt
4 6 ac*—9 be* 4 ¢*. “dns. 2a—3b+c.

Ex. 8. Extract the cube oot of
1 1 41 43 41 1 1
: 1 2 1
JM. Eﬂ.—§ﬂ+z.
Ex. 9. Extract the cube root of o
8 .69 - 219 69 9
2—7"—"y+2—4"y’——a"'y’+1—61‘y‘—z¢y’+!['—
92. General Rule fog--Ezlr-acting' Roots of a complete
power. ‘ : o g
It has boen shown (Art.84) . - '
(a+z)‘==a"+na'"x+&a.- (A)
And, therefore, CL . :
V(@ +netzt &)=tz

From this formula, the rule is readily derived. For, the
first term of the root is the nth root of the first term of the
power; and the second term of the root-is equal to the
second term of the power, divided by na"~".

Also, by the same article, (84), we have

(@+z+yr=C(a+2)+yr
=(ata)+n(atz) 'y +.&
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‘Whence -
YV {(a+ 2y +n(a+ 2! y+&c}=a+x+y

‘Having, then, determined the ﬁrst two terms of the root,
if the nth power of these terms be taken from the given
power, the rema.mder is

‘nat+z)'y+ &e. ,
of which the first term consists of the remammg term y
multiplied by n (a 4 z)*~*..

In order, then, to-determine y lt will only be necessary to
divide the leading term of the remmnder by

n(a+ )"
but as in detemnnmg the quotient, the first term only of the
divisor is employed, it will be suﬁicxent to dnvxde the first
term of the remamder by .
. na*-.
Having thus determined y, if
- c(atzty)»
be subtracted from the glven power, and the ﬁrsfterm of the
rema.mdet be divided by .
. nan l . .
‘the next term of the roat will be detenmned ; and thus we
may proceed until the: operatlon is completed. These dif-
ferent processes are contained in the following -

° RULE FOR EXTRAC'I'ING ROOTS.

.ﬂrﬂm }he terms as directed in division, extract the
700t of the first term of the power, and subtract its power
Jrom the given quantity. -

For a divisor to be used in all the subsequent parts of
the operation, raise the root already determined to a power
whose index i3 oneé less than the number of the root to be
extracted, and multiply by said number,

Divide the first term qf the remainder by the divisor,
the quotient will be the second term of the root.

aise the root thus determined to the given power, and
subtract dj‘rom the given quantity. )

Divide the first term of the remainder by the dwuor for
the third term qf the root, and so proceed.
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Ex. 2. What is the fifth root of 32 a®* — 80 a*z 4 80 a*x*
— 40 a*2® 4- 10 ax* — 2% o Ans. 2a — z.

Ex. 3. Extract the fourth oot of 81 a*— 216¢'z +
324 % — 312 a*2® + 214 @'zt — 104 a%* + 36 ast

——8az7+z‘. . - . JAns. 8a8—Qax + a%.
" Ex. 4. Extract’ the cube root of 8 x%-— 86 2% 4 66 x*
—632°483a°—9 2+ 1. Ans. 225 —8z 4 1.

The fpreceding rule may be applied to the extraction of
numbers. The operation, however, being very
]abonous, the rule given by Mr. Horner in the Philosophical
Transactions for 1819, which is developed in the second part
of this treatise, will be found much more convenient.

CHAPTER V.
SURDS AND IMAGINARY QU:&NTITIES. -

.BECTION L . .
Surds. .

93. Anv express:on indicating a_ root which eannot be
expressed accurately is called a surd, or irrational quantity.
Such are /5, /9, Va, v a? &c.

The operations upon surds areof great 1mportance * we
shall therefore .treat of them pretty fully in -the " following

S,

%:15 generally most convenient to express the root by the
fractional index ; since then, as will be.shown, the multipli-
cation and division' of such quantmes are performed as
though they were rational. -

94. To reduce surds to others having a common index.
Let ¥/2* and ¢/a* be two surd quantmes expressing
fhem by a fracuona] index, they are written -

%’ and a%

* A eurd having the sign of the square root is called a quadratic surd,
and with the sign of the.cube root, as cubic surd, &c.
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reducing the mdwes to a common denominater, they become
2 = 2® and a'T = V@, -
From the mode of operation employed here, the geneml
rule may be denved

Ex.2. Let y5a.nd +/3 be the snrds. Theybecoxneas

nbove
=6t =8t = Y5 = 425
Ex. 8. Reduce yﬁand\/'aand,/ﬂto snrds lnmngn
common 1ndex. .

Ex. 4. Reduce /a* and \/6 to surds having a common
index.

Ex. 5. Reduce ¥/5 and +/3 to surds having a common
index.

Ex. 6. Reduce Ja‘ and ‘yb- to surds havmg a common
index. .

Ex. 7. Reduce 5t and 3% to surds having a common in-
dex.

Ex. 8 Reduce 7% and 4‘?f tosurds having 2 common index.

© 95. A rational quantity may be reduced to the Jorm of a
surd by raising it to the preper power, and indicating the
root required. .

Thus 3=\/9 .a/27 V81, &c.
== Y& = Ya, &e.

Ex. L Reduce"l to a quadratic surd. - /ns. (/49
Ex. 2. Reduce e to n-cubic surd. :
Ex. 3. Reduce 5o’z toa biquadratic surd. .ﬂm
Ex. 4. Express — 7 a in the form of the fifth root.
~ Ex. 5. Reduce 34 + 2 to a quadratic surd.
Ex. 6. Reduce 5z + y to a cubic surd.
Ex. 7. Express — 8 a% in the form of the fifth root,
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96. It is of importance in operating with surds to be able
to reduce them to their most simple form.

To do this, the fractional index must be reduced to its
lowest terms, and the rauoml factors then separated frem the
others.

. Thus, let /54" be the surd. - "The. fractional mdex = -}

KN ¢54'=y54 Now,54=27x2,and27bemgncube
its root can be taken, whxleﬂmtof2lsasurd The result,
lherefore,wﬂlbe3e’2

The operation may be expressed as follows, viz.:
T ybt =yl = VI X2 =32
Ex. 2. Reduce 316 a*bc® to.its simplest form.
" Here 8 a®b3* is the greatest cube factor, hence
Y16a%b%cs = /(8 ab*ct X 2 act) = 2abe V2 ac’.
Ex. 8. Reduce /45 and "3/5(!) to thei‘r simplest forms.

~ Ex. 4. Reduce e’192, 3 ¢245 4 \/96 and /96 to their
simplest forms,

Ex. 5. Reduce ¢ vVig — Saz and V24a*—b6a'z to
their slmplest forms.-
- Ex.6. Reduce V@ (@ —az) to its snmplest form. -

To reduce a fractional surd to its most simple form, its
denominator must be made rational, which can always be
done by the mtroductwn of g suitable factor. Thus -

2 ve 1

Ex. 1. ¢—=¢4 2,=.:§,/2.

Ex.2. ¢_= ‘/EE—,/(%X«B) 2 V6.
"Ex. 8, v34v2 ‘/3+‘/2x‘/3+‘/2 54246
V3=—v2 ¢3 V27 /342 32
=5+2../6.
Ex 4. Reduce ¢ ¢3 yg, d\/-——totheu'nm-

plest forms.
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V548 v5— 3
Ex 8. Reduce 5_‘/3and‘/5+‘/3

to their sime
plest forms.

Ex. 6. Reduee 6,/5, 'w;, and 4,/ to their simplest
forms. »

5 7‘73 .
Ex. 7. Reduce —— 72y dﬂ+‘/3tothen- sime

plest forms.

Ex. 8. Reduce 6’?, 6;;5 . and j:'i':;itotheu‘slm-»

345 d7 V3
3—v5 743

plest forms.

Ex. 9. Reduce
ple forms.

97. To add or subtract surds they should be reduced to

their simplest forms, and the operations then performed as
" with rational quantities. Thus, -

Ex. 1. Let the sum of /20 and \/135 be reqmred The
operation is as. follows, viz. : )

vV W=y 4%X5)=25 .
¢/125=\/(25x5)=5,/5 )
.. the sum is 7V5.

Ex. 2. Add 3 /45,7 /20;8 J125 and 2 \/80 together.
Ex. 3. What is the sum of 3\/3 and 6 ‘/8

Ex.4. Add7,/5+3,/27 9./20 — 5¢75and2¢125
— V12,

Ex. 5. From 3 \/5— subtract 2\/3—2.
Ex. 6. From7 /189 subtract 3 ¥/168. ~
Ex. 7. Add 6 /27,9 /192 and 7 /75. o

. Ex.8. From3~/%—+4~/§o subtmt_:t—%—ﬁ\/l_ii—& .

to their most sim-
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98.. Muit:phentxofn and Division.
Let it be required to multnply ~/a* by Ya.
_ These quantities expressed with fractional indices are _

?m‘lda . or a""andaﬁ'
The product of these evidently is
\/au or a{‘%’

Hence, to multiply different roots of the same quanti
add the fractional mdlces, and, of course, to divide di erent
roots of the same quantity, we subtract the indices. :

To make this matter, if possible, clearer, we must recol- -
lect, that the invelution of monomials is' performed by in-
yolving separately each of the sxmple quantmes of which the
monomisl consists. Thus .

(8 ab*)® = 3% x a® X (b%)* = 248 a®b™.
This being the case, the evolution of similar quantities

must be performed by takmg the. root of each factor sepa-
rately. 'Therefore,

Vb= ,/aaaqaa::-{‘/ax\/izx 'g‘/ax\/ax Yax'¥a,
wd Vo= T Wax¥ax¥et+Vax¥a.
These, multlph'ed, evidently give %/at, as above.
99. In regard to the maltiplication and division of roots
of different quantities, the surds must first be reduced, so as

to have a common index. The operation is then performed
on.the geneml principles of multiplication or dmslon.

C o ExanprLEs,
Ex. 1. Multiply 7 /6 by 4 /2.
Here 7¢5b=TY0'=7Y 2.

and 4V2=4y2=4y 8
o the productis .. . 28¢200

.. 5.8, 9
Ex. . Diride 3 ¥g by 35 Vg

&
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Here, by the general principle of the division of fractions,

we have
9 2 5 3 10 5 50 156 50 .60

EACRETAC I AR B Rt A STt A1

50 ) ] 25

579 (5 x80) =3 x g ¥00= 3 ye0,
which is the quotient in its simplest form.

Ex. 3. Multiply 3 /17 by 5 /8.

Ex. 4. Maliiply 5./5 by 7/5.

Ex 5. Divide 3 /15 by 4 /5.

Ex. 6. Divide —\/4 3\/2.

Ex. 7. Muliiply 8 /3 and 9 /7.

Ex. 8. Mu!tipl_y 6 ‘Vg by 8 \/-2—.'

Ex. 9.’ Dmde = 6’4 ‘/5
Ex. 10 Multxply 3+ V5 by 2 — /6.
JAns. I—JE..
. Ex 11. Mukiply 4+3¢7 by 2—2 /7.
.am. —34—2 /7.
Ex. 12 Multxply + ¢5 by 4+ 4¢5 _
Ans. 14~ \/5.

Ex. 13 Multlply ¢3+3J2 by \/2+2~/3.

: “Ans. 12 +7 /6.

Ex. 14. MuhxplyBﬂ—2¢5 by2¢7+3¢5 :
Ans. 5,/35+12.

Ex. 15. Multiply . 3¢5+7J3—3J2 by 20 -
—212'+ 8.
JAns. 2'/164 26 /6 —66.
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Ex. 16. Divide 41by 9 +24/10. ° -
JAns. 9 —2 /10.

This is most readlly done by expressing the quotient as a
fraction, and reducmg to the simplest form, as in'Art. 96.

Ex. 17. Dmde24+7\/10 by3¢5—¢2
dns. 25+3 2

100. To extract the root of 4 monomml surd, we have
only to apply the principles already. explained, (Art 87.)
Exmm.’zs; :
* Ex. 1."The cube root of 125 /7 is Tequired.
Here (126 Jz) e’(l% :cg) =5 2+ ot
= 5 -\/ . ) .
Ex. 2. What is the square root of 81 a’b* ?
£ Ex. 3‘ What is the cube root’ of216\/ab'?

" Ex. 4 ‘What is the ﬁfthrootof32€’afb5!

101. When the surd consists of two terms, one of whxch
is rational and the other a (}1 uadratic surd, its root may some-
times be obtained by the fo owing formu]a, viz.:

v a:!;\/b)z\/(ia-{- \/al—b):{:\/(za——\/ a-—b)
which may be demonstrated as follows : - -

Lét Va F ot + /b= V& 4 +/y. Squaring both. members
of the. equatlon, it becomes

e+ b=a+y+2Vy.
And es a surd cannot be equal to a rational quantity, we
must have B T4y=a- )
whence - 4day =b. (@)
I from the square of ( 1) we subtract (2), we will have
L =Ray Yy =at—),
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whence extracting the square root of both members -

. z—-y-:\/a’—b,'
but - 24y=a
R 2x=a+4+Va—-b,
and . 2yma—Va—p,
or zqé-a-{-%'\‘ a—b,

» yn:léa-—% V:-G'—b. B
1 1, 1 1
ek i) ol
Again, since @ = z 4y, and ,/b == 2 /zY, we have
6—=Vb=2+y—2 /zy. .
Now the 2d member of this is evidently the square of .
, VE—VY. o
o4 V) hehE)
In order that the result should .ap ear in a simple form,
it is evidently necessary that a%-—5 s'!)mul([_ be a. square.

, ExampLes. )
. Ex. 1. Extract the square root of 7 44 /8.
Here a=7,and /b =43, .. b— 48.
Hence . ' ' .

VOV (V88 + (| Lvaoi)
=G v D mrevn

Ex. 2. What is the square root of 5 4 /241 :
o  dns 24 8.
Ex. 8. What is the square root of 7 — /132 - -
. T Jins. &.5/26”—-;%’_‘/2
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Ex. 4. W!mtxsthe squarerootof 10— /511 .
. ons. 3 v34—1 /6.

Ex. 5. WhMmthesquuerwtef7+2¢10? .
- Ans. /54 /2.

Ex. 6. ‘What is the square root of 12—4 /51 e
Aans. 10— /2

- Ex 7. Whntlsthesquare root of 87 4- 12 /71!
. Ans. 34+2/7.

"Ex. 8. Whatlsthe square root of 234 6.,/10?
. .ﬂna 8v2+ J5.

SECTION I
Imaginary Quanlih'a. B

102. Every even power of a negative quanuty bemg posi-
tive ; it follows that such’ expressions'as /—a?, \/-—b*l &c.,
can have no real value. They are, therefore, called Imagt- :
nary Quantities.

'rl’yhough imaginary quantities have no real value, yet as
they are of much use in analysis, the principles on which
the” opemtxons upon them are founded are of great im-
portance. )
~ 103. In the algebmlc solution of arithmetical questions,
we never arrive at such results, unless the conditions of the
problem are'inconsistent. They therefore serve to point out
. such inconsistencies. For example, let the followmg ques-

tion be proposed,. viz. : '

To divide a line, 8 yards in length into two such parts
that their rectangle may be 25.

If we represent the parts by x and y, the equations will be

~ : z+y=86,
and . &y = 2.
Fromthe lst z‘+2xy+y’u64.
But 4 2y =100. .

<
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.. subtracting this from the preceding, we have

*—2zy + Y =—386. -
And extracting the square root - K
C o ey = /—86=6./—I.
Adding this equation to the first, and dividing by 2,
we have r=4+8/—1,
and y=4—3/—1.

8ince these values are imaginary, we conclude that the
problem was absurd. This we knaw to be the case, since
the greatest rectangle would be formed when the parts were
equal. In this instance it is 16.

104. The addition and subtraction of imaginary quantities
being performed on the same principlés as the addition and
subtraction of surds, present no difficulfies ; we shall, there-
fore, proceed to multiplication and division.

It 13 in the first place evident that .

. V=8 X/ —G=—a;
8o that in this case = a*=—a.

Now in general we may assert ‘
that - : V&= +4a,0r—a;,
which is written . Fa '

It might from this be contended, that' 4 @ = —a. The
reasoning, however, would be incorrect ; for x is not equal.
to @ and — a, but to either @ or —a. - In other words, there
are two values to Va3, These values are numerically equal,
but of different signs. The symbol = expresses, however,
more than mere numerical equality, it implies perfect iden-
tity. We shall hereafter see many cases in which the
required quantity admits of several values; but we cannot
from thence conclude that these values are equal. .

In the following problem, for example, we shall find -that
there are two numbers which satrsfy the conditions; and
consequently the letter whichi represents the unknown must
have two values, viz.: . . .

What number is that which, being subtracted from 10,
and the remainder multiplied' by the number itself, the pro-
duct shall be 217 . . . . ]
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Here, if x represent the number required, we shall have
« =7 ar 3, as may be proven by trial. Thus,
(10—7) X7=8 x 7 =21,and (10—3) X 3="7 x 3 =21.
~ Tt'were folly thence to conclude that 7 = 8. )

So, nithough \/a* = a or —a,-it is not true that @ == —a.

‘Whien, from the circumstances of the case, no means are
afforded of determining the sign with which the root should
be affected, the result is ambiguous. This produces no in-
convenience when mere analytic operations are concerned.
In fact, it is of advantage ; for the formule would otherwise
fail to present a full solution of the problem under considera-
tion. In the application to' arithmetical and geometrical
problems, however, it sometimes happens that one of the

results, though amalytically correct, is excluded-by the con-
ditions.of the problem. We shall see numerous examples

“'of this in Quadratic Equations,. :

105. If the (}ﬁantities bé‘unequal,‘as J —aand o/ —b,we
nmay not be able at first to discover what should be the sign
- of their product /ab. When, however, we put them in
the form /a . o/ —1and /. v/ — 1, we readily perceive
that their product is V@b X —1 =—/ab. '

From this, and the general principle of multiplication, we
may form the following table, which includes the different
cases of the multiplication of imaginary quantities.

V—=ax—a=-"a
—/—ax—V —a=—a
eV —ax'/ —a=+a.
V—8X —b=—yab__
—J—ax—¢—6=—~¢ab
—V —axy —b=1+/ab :
v—axX—v —b=ab. .

, ‘ Exnn:r.ss.
Ex. 1. Multiply 3 o/— 2 by 4V 3 ,
C - Ans. — 12 V6.
Ex. 2. Multjply 6 v—b by —_ 3 \/—-5. ﬂm. 90,

2
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Ex. 8. Multiply —7 ;/— 8by — 4 v/~38.

] _ Ans. —84.
" Ex. 4. Multiply —8\/—7by2,/—
.ﬂm. 16 /14,
Ex. b. Squm3¢—5. I .. dns, — 45,
Ex. 6. Cube —2y/—8. = dns. +24/—38.
Ex. 7. Multlp]y3+2¢—3by4 3-8
-t 8424/—8 : : .
4—-8./-8.
12+8.,—3
—9y—3418
30— —38.
Ex. 8. Multlply 4—3¢—2by 2+6/~
. ﬂm 28-]—30,/—'

Ex. 9. Square 8/~ 2+ 2. dns.—14+12/—2.
Ex. 10. Cube 2—/—3. ﬁns. - 10'—-9 v—3.

'Ex.u Cube.a—b/—1.
C dns @t — 3ab'+(b' 3a’b)¢—l

Ex. 12. Gubea+b¢—-]
Ans., a’—-3ab’+ (3a’b—b‘)\/—-l.

Ex. 18. Multlply3¢—2+5,/—3byzs/ 2

—38,—3. X Ans. 33— /6.
Ex 4. Multlply 4 J 6—3¢—5 by 2¢—

- Ex. 15. Muluply4\/2 3J—3by V345 —2
: .ﬂns 23¢6+2’2¢—l

106. Dmslon of imaginary quantities is performed on the
same principles as the division of surds. We shall there-
fore merely append afew examples for exerc1se

Ex. 1. Divide 5./—6 by 2¢-—-3

6/—6 5
2¢A3*2“z
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Ex. 2. Dividle 2+ ,/—8by 2—,/—38.

.-;i:/‘/_g = (mukiplying the terms by 2+ v/—9)
144,38 :
—y . A
Ex.3. nda-a¢—15by4 V=3, .
: ‘ Ans. —-—JS
Ex. 4. Dmde-—‘)"/—Gby 3/-—
s/—-=—s/3-
Ex 5. Dlnd03—¢—3by3+¢—3.
\ dna. L —Ly—3.

Ex 6. Divide 1+J—lbyl—¢—l .ﬂm s/—l
Ex. 7. Dmde§+~/—-2by6 ¢—
: ’ J]ns —+m,¢—
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CHAPTER VL
EQUATIONS.

107. An equation (as defined Art. 6) is an expressmn of
equality between two quantities ; the quantities considered
as equal, being. the members or sides of the equation.

108. A simple equation is one in which the unknown
quantity does nat rise above the first degree.

Thus, © 2x+8=5x+17;ar+bzr=n, .
are slmple equations.
109. A quadratzc, or equation of the second degree, is
one in which the square of the unknown appears ;. as in
4 28— 5 x = 20.

110. A cubzc; or equatlon of the third degree, contams
the cube of the unknown ; as. = -

- 8 — 5:0’+2z=80

111. A bigquadratic, or equation of the fourth degree, con-
tains the fourth:power of the unknown ; as

428 —80xt + 652 +8x="70.
112. Those which contain ‘higher powers than the fourth

are called equations of the fifth, sixth, &c., degrees, according
as the highest power of the unknown is the fifth, sixth, &¢.

113 A pure equation is one which contains but a single
power of the unknown quantity. Thus,

az® =1, aud5z‘=80

are ll.mre equauons of the tlurd and fourth degrees respec-
tively.

.114. . Those equauons which contain _more than one -
power of the unknown guantity are called adfected equations.

115. A complete equatiop contains all the powers of the




SIMPLE EQUATIONS. a3

unknown, from the highest down, and also- a known term ;
thus . ' ’
’ #—52 4828+ 8z +20=0

isa completé equation of the fourth degree.
\ SECTION L
' Simpie Equations.

| Recap.itulation'qf Rules.;(.ﬂrt. 8 and 9.)

116. 1st. An equation may be cleared of fractions by
multiplying by the least common multiple:of the denomi-
nators. oL R

N , b

2d. Any quantity may be transposed from one member of
an equation to the other by chariging its sign. - o
On these two rules' depend all the methods of solving
such simple equations.as do not involve the roots of the
unknown quantity. -The artifices to be employed vary so
much with the nature of the equation under consideration,
that much must depend upon the ingenuity of the stu-
dent. An equation should, however, generally be cleared
.of fractions; after which the terms containing the unknown
quantity should be collected, -by transposition, in the left
member, and all the others in the right, then dividing by the
:l:oeﬁic;ent of the unknown quantity, we arrive at the value
esired. . o

, ExayrLes. ‘ :
e @48 4 Yz—1) 9 i,
Ex. 1. GlygpA =T toﬁnd:lc.'

Multiplying by 105, we have .
167+ 45—84 =70z—70—189. .
Transposing, 16z—170z = — 70— 189 — 45 4 84,
or,’ ‘ —b6b6x=—220, ° T
whence : Lo z= 4

3x+4_\_ W—2z

Ex. 2. Given =2 = = 16—2z, to find the

value of .
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Clearing of fractions, we have
324+4—R2+z=80—10z,
whence 14 z =98,
and ) z="7.

Ex. 3. Given (ac 4 bd)* 4 b*z = 2abed 4 (a* + b%) e,
Squaring ac + bd and multiplying the factors in the last
term, we have
a%c® + 2abed 4 b\ 4 b*x = Labed 4 a*c® 4 b -
or omitting the terms found in both members

B 4 bz = b,
whence ’ B3z = b%® — b'd,
and = ¢ —d°.
Ex. 4. Giren ""5.4;..5 —8"—2+7,m find
the value of z,
Cleunngoffnenom,wehvo .
Sz 440 -— 266-280:—21:+l4+80&
or, — 351 z = 632
130
Ex. 5. vaen7z+6—8z-=56+2z.toﬂndth¢nlue
of z. Ans. z = 25.
6 4z
Ex. 6. Given = +-s-+6--—+7,to find the value
of z. ; Ans. z=185
Ex 7. Gi ns:;-ﬂ_*:zz_lﬂ';ilz_ﬁzzal,m
find the value of . . Ans. z =38.
Ex.8. Given 22=5_ 2 _15_Z+5 o e

z+.3 B 4 44
value of . Ans. z wm—3
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. 2 ‘8 1 .
Ex. 9. Given 3 (=+ S)T—I. Rz+7)= 2 (8xz—5),t0

find the valie of .  ans z—'lz%. »
. e Bz49Oz—T) 13
Ex. 10.  Given 12z + 7 — 62—3 -—12—1-
to find the value of z, Ans. z=4.
Ex. 11. Given 2 + D e d, to find the value of z.
z ' ¢z .

. ! -, JAns z=“+b’ .
. i ” : = " bed

Ex. 12. Given (a + 2) (a—":c)\—-Sax- ﬂ:—w, to
find the value of z. . : 2a
“ ‘.ﬂm. x=_§_.

117. It very frequently happens-that the unknown, either
simply or in connection with known quantities, is affected’
with a radical sign. One of the first steps in such cases is
to clear the equation of surds. This may be done readily if
there is but one such quantity in the equation. For if we
transpose so as to leave the radical stand by itself, and then
involve the e:iuaﬁpn to a power indicated by the index of

the surd, we evidently obtain a new equation clear of
Thus, if the equation is
- VE—attzr=ue42az,
we have vVi—ax=a+ 2.

Whence by squating both nimbers, we obfain .
L. z’—a:c=a’+2ax+z‘..
From this we find ’ A
R === -
_ . G ‘
118. If there are more.than one surd in an equation, no

general rules can be given as to the arrangement of the
terms previously to involving. It depends in each case upon
the nature of the surds; the method of proceeding must
therefore be left to the ingenuity of the student.

“In many instances -the question -will admit of. varigus
modes of solation. .

! 9*



Ex. 1. Given Va+ z = az + va—z.
Squmngwebave¢+z=ax+2\/a7_—-—+a-z,
whence - 2z —az = 3V @ r a2’
Squaring ~ 42°—4da* + o't = 4 'z —4 oz,
Caneelhng—-‘!a‘x,anddlndmgbyda

dxfatz=40
whence ( ) x = —4——
a4

_JAnother solution.
Tnnspomngwehaves/ —s’a—z=¢az,
Whence by squaring @ +z —~2 v ad*—2* +a-— =07,
and transposing—2v @ — = ar ~2 4, )
whence 4 —4 =o' ~4ax+40%

transposing and dividing by # -
’ 4zt az=4a"
. ¢ r. = 2
o a* 44
Ex2.Given,/z+c/_‘z- 10t find the
vitz ‘
value.of z. o ’
" Here cleanng ‘of frachons, we lmve
VErF o +6+2=10.
e _ V5:c+a:'—5--z
And’ 5:c+z°=-25-—-102:+z:’,
whence T 16z=2
and L ‘ za=5.
: S 3

. Ex. 8. Gnms/ a+8a-7.toﬁadthnhaoft
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5&4. vaen Va’-i- -b+.r.toﬁndthevalueg£z.
) a

2
Ei, 5,Gmm ~/_+ +/zm—22 o find the

- Vatz a

valueofz o : : sz\=§

Ans. =

Ex. 6. leen \/a+z-\/4a’+:c’, to ﬁnd the value

of 2. ' Ans. 2—8—2‘-'

Ex. 7: Given a+z=¢{a~+:¢(b-+z~23, to find

thevalueof;c. .&m 2= —4a
. i 4a
Ex,S Given x+a+~’ +z‘=b to find the
valueof 2. . (b—ap
. \ ; .dm..x=——§b—.

V428 _ \/z+38 :
Ex.9 Gawn¢x+4 ¢+6,toﬁndtheydue

of x. Ans. x=4.

Ex. 10 Given  Taz +b =3z \/a:c + 53, to ﬁhgb’the
value of 2. : i m z=T

Ex 11 vaens/{l+zv'z’+l2}=-l+z,toﬁndthe
value of . _ /Ans, e

Ex. 12. Given \/2.1:—4-{-12—14 to find the value
of z. .ﬂm zr=4.

Ex. 18. Given Va+w+$’a—x=b toﬁndthevalue
of@ . ‘ b — 2a
N o ‘ .ﬂm z= a’—( )

Ex. 14, Given. é’6+z+6’6-—m_2,toﬁndthe va-
lueofz\ ) .
S T Jns, w-v./la.
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2a
V(e +2)
a' N

value of z. . ’ Ars. = §

Ex. 16. Given 8z 4 8: 5.':+2..5 3, toﬁndtheva—
lue of . See Art. 43. - JAns. z=8.

- Ex, 16. Given Vot + 2 + V2 = ———— ,toﬁnd the

Ex. 17. vaen 102-{”:42—-9::.2:B;to_ﬁndtheva-

lue of 2. , : : dAns. =4.
Ex. 18. Given 1744”.'5‘;“ 22::6:4, to

find the velue of z. S Ans. z=38.
7z+5 6xr—83 846z 65— 73:
Ex 19 Gl 6 : ,7 g e 2 3 X 4. = ]
to find the value of z. ;
Ex. 20. Given /{4 + s/z" z‘} =% —2, toﬁnd the

value of\. 1
JAns. z-.-2§.<

Ex.2l Given \/a+¢z+ s’a—Jz—Jx, to find
thevalueof:c .Ans. :c=4(a-.—l)

Ex. 22. leen\/(——+b) J(——b)aJc,toﬁnd

the value of z. - 4 a'c.

ﬂm. 2=4b’+c’

Ex. 23. Given vat 2 — ?’HLz = VZaF o tofind
the value of z. . —2Va—a ‘
.ﬂm z = (—2—4-_7— Jva.

119. In all cases where there are two or more unknown
quantities, there must be as many ‘independent equations,
otherwise the number- of results is unlimited. .

I, for example, the equation -

br4+6y=11




SIMPLE EQUATIOMS. 105

were given, to.determine the values of x and.y, we would
- 11—6y :

have =

in which we might give to y any value whatever, and thence
determine a corresponding value of x. (See Indeterminate
Analysis.) o .

But, if to this we add the condition expressed in the fol-
lowing equation; viz. : L

. .3 x—éy = 5, .
the problem becomes entirely limited; for from this we
derive ) T = —5—:;_—22, :

v

and as these two values must be équal;"we have
. 11—6y 542y
- .' - 5"'-' = 3 ’ » »
from which we readily determitie the value of Yy, viz.:

2
. ¥=q |
11—6y_:l3 x=5+2y'_E.asbe-

whence z == 5 _7,or 3 7

fore.

. Moreover, these are the only values which will answer
the required conditions. . '

120, The-gbove solution leads fo

<MAn'rn>on, i,

Of determining the values of the unknown quantities in
two equations. _

It consists in finding the values of one of the unknown
mlantities in each equation, and equating the results. We

us obtain an equation which contains but one unknown
quantity. This may be detérmined by the methods already
explained. . ' SR

This process, by which we arrive at an cﬁnati(m indepen-
dent of one of the unknown quantities, is- called elimination,
and the quantity which is thus made to disappear issaid
to be eliminated. : ‘ :

\
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MEzTHOD 2.

Multiply one or both of the equations by such number or
numbers as will make the coefficients of one of the unknown
quantities the same in both ; then add or subtract, according
as these terms have different or like signs. By this process
one of the unknown quantities will be eliminated ; and the
value of the other may be determined as before.

As an example of this. method, which is genem]ly the

best, as it admits of more compactness, we shall solve the
same equations as before, viz :
5z 6y =11
8z—2y= 5.
Multiplying the last by 3, we have
o 9z—6y =15,
adding to the first Yz =206;
hence . 13
when , gé 7
and : y:_—.llzazagpsbefom.
‘We may also eliminate by ‘
4 MerTHOD 8.

- Find the value of one of the unknown quantities in either
of the equations, and substitute the value thus determined
in the other equation. We will thus arrive at an equation
containing only the other unknown quantity, which may be
found as.before. o )

_ Let the equations be )
3‘$—2y=5.

-

From the last equation, we have
ety
.z - ‘ 38 . -
_'This, substituted in the first equation, gives

BAOY foymin,
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Cleanngoffmcuons 25 + lOy + 18y =33,

whence : Wy = 8,
andy | S y=5
Cohséquenﬂy = =2 4;23/ l:

121. Whichever of these above methods we desire to
apply,-it will lfenem.llyr be best to clear the equation of frac-
tions, and collect the terms which contain. the unknown
$1antmes. If method 2 is employed, they should be upon

e left side of the equation.

« Though the second is genera.lly the best method, yet it s
nat universally so, as in some “cases particular artifices may
be employed which will shorten the process.

If, for enmple, the values of 2 and y were requu'ed from
the equatlons .

and we were to clear them of fractions, we would obtain
4y 4 62z=9z —ay

- 10y + Sz =14y + 8y, A

which, by transposition, become .- - S

. z—4

- gaﬁ 4Z=gy:cy,

whence, by subtraction,

e ‘ 4z—2zy, )
or y=2.
From this we readﬂy derive

T = 4.

Othermse Transpoemg, we have ‘%— :—= -1,

and ' : g-_ig. — §
' oz oy 2’
' . o2 1
-whence,.by subtraction, >=g

Y = % as before.
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. - Examrres. _
Ex. 1, Given {g:Igg:g}m determine the® va--

lues of z and ¥. Ans. 2 =2,y =5. °

Ex. 2 Given Jg z:gg“ 34}:0 find the values .of
zand y. ‘ dns. 2=12, y=2.

: l2w+3y=5y+36

Ex.8.Given 4:: 2y—3 =4y Bz+15 }
B — 2
wﬁmlthenluwofxandy : dm z—ﬁ,y-l&_

Ex. 4. Given < . Y40 find the values of =

14-+7x=51 |
and y. . T .ﬂna‘.z=7,z;=l4.
Ex. 5. Given « 1 1 . Sto find the values of z
. | I“’+§3=7‘ -~
and y. . - Jdns, z=12,y=8.
. - z41: y .
Ex. 6. Given < 22 5—y 41 2z — 1 btofindthe
3Tz B
values of zand 3. ' Ans. a:=4,y=3
-;—:c 2z~y =8y—b5 .
Ex.7. Given S (2 ’iz_ o find
-'/'2 +25 .:hl_S—-Bz'
thevaluesofzandy . JAns. z=8,y=2

.z'+y 4x+y:: 14: T
e
ExSvaen T—2x 21_3y 2+ 1

5 T T 4 38 .6
to find the values of z and y. JAns. =3, y=09.
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Ex. 9. Given $ o T3, 2 to find the values of =

m—bm* am’' —am
@—ab V= ab—ab

‘These results will serve 1o solve all equanons that can be
reduced to forms similar to those of this example we have
merelyb substitute_for a, @', b, b’, m and m’, “the numbers
to which they are equa.l and: then reduce

and y. Ans. z =

: b K .
. . —+—rl=m
- Ex. 10. Given- f 'Z find the values of z
. . _+g_n
du. Ans. z bc—ad‘ be—ad -
and y. . I T nd YT me—na

Ex. 11. Given
+22:y—2x:: 12z+6y—8 6y—l2:c—l

8:»:+
521—83; — 7 l2z—8y+3+l5z‘
toﬁndtl_wva‘luesofzandy. - Jns. :c=l,y=4.
.b N
"Ex. 12. leen{b_'_y 3a+z}to find the values of
. ax+2by=c¢c
2@—6w+c
x and y. Ans. T
' . . 8 ah—b9}c
y="%5
Ex. 13. Given
3xz+456a: 3r—ba: 4a:+2a-——y 4r—a+ty
§7a:c 3y:7ay—bz: ‘7aa:+3y Tay+6z .
to find the va.lues of z and ; y .
- . s z=-——ﬁ,/15.
L - 14a
Y=

’ Seo eximple'wll'?)ught," page 107.
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Ex. 14. Given z+§,="§mﬁndzandy
@4b a—b
dns. 2= Y=g
Ex. 15. . :
: r 3y+6 8z-2
PT-'-“’ y:-~ 10 Y 2 A
Given ) T8 16

2429, 2, Y42
2 3°2°2 376"
to find the values of z and y. )
: CJnscxz=4.

ya‘s.

évz+%y;'13=' ,/:‘z—%y-;-o

"Ex. 16. Givenq' .. 3 1 1

. qu+§y—10=§-,/z+§y+72

to find the values of z and y. — . B

’ : Ans. 1‘=64,y=14.‘

1 4y+l3z 12248
42—34— 27—6y = 3

21—4y 182413 _1

Bt —10"" 6 %
to find the values of z and y- Ans. z=1, y-=5.
Ex. 18. Given o
Soq2y 022t =z+y—2z 42—y
6 3 7
+2z:y—22:: l2z+6y—3 Gy—-lﬁz—
to find the values of zand y. ~ - /ns. =1, y=4.
z _g9_50—2

Ex. 19. vaen :c—zl——— =20 —
R —z |

Ex. 17. Given

. . to find
and . y+ y—3 :-30—73—3——233/
the vaesof zand y. .dm z =21,y =20.

r
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Ex. 20. Gi 12+ 0722y +54+ 5T
X. o 1ven
.wﬁndthevaluesofzandy
. Jm.‘z=8,.y=4.
6::‘ -
4 _ 3z+6y+1 +;30+§4~
Ex. 21. Given e 151—.161: 9;;_.,—110
@ = N
4y—1 3y—14

mﬁndthevaluesofwlﬂd.'/

s, x=9,y=2.

122. Equatwm containing three ar more unknown
quantmea. )
The methods employed in solvmg equatlons containin
three or more unknown quantities, bemg anly an extension of
those explained in the last article, require no farther elucida-
tion. We shall therefore merely apply them to a few ex-

amples, and affix ethers for the exerclse of the student.

. Em:.

z+y +2z =156
Ex. 1. leen x+2y+3z-—28 toﬁndthevalu&

z+3y+4z=28
of z, y, and z.
Subtracting the 1st fmm. the 2d and the 2d from the 8d;
we have y+2z=8
. Y+ z=5,
whence > z=8
; L Yy=2
and .z‘=15-'-y-—z=10
- Ex. 2. Given 2x+3y +4z-40
. 4z+5y+62=90

62—8y+4+42z="75 to find the va-
lues of z, y, and z. :
Subtncung the 1st from the third, we have
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Multiply the 1st by 3, and the 2d by 2, and subtract the

former result from the latter, and
22 +y=060.
‘Whence 12z 4 6 y = 360,
but ‘ 82—6y =35,
K ‘15_1‘=395.
and _ - x =263, '
Also : y=3z—35=7§,‘
wi o paBoiyoE g :

Ex.8. Givei' z4yy+3z=32

: 1 .1 1 .
- %z'-l—éy+%z=l2, to find the va-
lues of z, y, and z. )
. JAns. 2 =12, y = 20, and z = 80.

Ex.4. Given 7Tz+4+6y+4+%2=79"
82+7y+92=122 )
. 2+4y+52z=055, to find the values

of z, y, and z. i B
Ans. x=4,y=29,and 2 =3.

This example is most conveniently solved by adding the

uations together, and dividing the result by 16; also, .
mn'ng the difference between the 1st and 2d, the two re-
sults and the third will form three équations, in each ‘of
" which the coefficient of z will be 1.

Ex. 5. Given 4x"—3y.+2z= 10
br4+6y—8z=—1 o .-
' — 2z 48y 4+ 82z =44, to find the values
of z, y, and 2. : )
. Ans. £ =38,y =4,and 2 = 5.
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Ex. 6. Given z24y+z=a e

z+y+u=b‘
x4z4u=c
. y+z+u—d, to find the values of
x, ¥, and 2. :
' .ﬂm t’___’a_____.-_l—b-gc—zd
' a+b4+d—2c -
y= S
a+tc+d—=25
F=——g
b+c+d-—2a
= ——
S - 3
Ex. 7. Given S E
4z+3y+3__.?z+2z—-y+l - 5_2-—.2—5
10 . 156 ) : 5
9z+5y—2¢ 2:c+y—8z 7y+z+8 B
R 4 11 "'e_
53 z Qx43 3x42y+7
y’? +12"’ z+2z =y— l+—é-:’—z+ +

toﬁndthevaluesofx,y,a.ndz
. . .ﬂm z=9,y=7,andz=8

1 1 1
ety |
Ex. 8. Given 1 +l =_1_  to find the values of z,
z 'z 9 (wpendz.
v 1 1} :
| f+;—ﬁ | |
‘ﬂn"‘z=l4 oy—l7 ,deE%L
49
, xyz—- ‘
Ex 9. leen vzy =30 | to find the valuesof v, “"_’

vaz =40 y,andz
vyz = 60_

_ JAns. v=5,a:=2,y==3.andz=4.
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’ y+z =96 N
Ex. 10. Given z+z =105 ¢ gnd thedvzalqes
z z 4 y) =117 y Y, And 2.

JAns. z=6,y 7,andz=9.

123. The followmg method is' sometimes preferable,
especially where the coefficients are literal. -

Mu]txply the 2d, 3d, &c., equations by some indeterminate
quantities, and add the results to the Ist. Assume the co-
efficients of all the unknown quantities except one in the
sum, equal fo 0, we will thus furnished with a number
of new equations equal to the: indeterminate quantities in-
troduced, from which equations these may be found. Their
values -substituted into the sum of the equations will eli-
minate all the unknown quantities except one, whence this
may be determined. .

. Exawrres.
Ex. 1. Given 2245y +72=456
8zx4+2y—8z=—38"
5z+3y-——z = 10, toﬁnd the values
of z, y, and 2. :

Multiply the 2d by m, and the third by n, and we have
2246y +7z =45
" 8mz42my—3mze=—38m
bnz43ny—nz =10n.

Assumenow 2m+8n+5=0, : N
and —3m—n+7=0, :
or ’ © 2mMm43n=—>5,
and ] Sm4¢n="17, !
whence .’ m”ns';—andn=-—:4l'
conaequently 2z+3m:c+5nz =456—3m+10n
. 146 - .- 78 200
bomes 224 pa—pamds—T 20
or l4z+‘78q:-—l45m=315‘-78 — 290,
whence . 63 » =63,

and z=1.
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In Jike manner . y=8
z=4.

Ex. 2. Given ar +by =c¢

. : ' azLby =c.

Multiplying the latter by m and adding to the former,
we have - . Lo '

‘ (a+?naf)z+(b+mb')y = ¢ -mc’.

If now we assume b.+’mb’ =0, or m =— %, ‘we have
z " ec4me E,b'b-—-bc'

= atmd  ab—a¥

., at'—adc
YT w—aw

1

apd

’ ar +by +c'z =m' '
Ex. 3. Given {a"'z +b7y 4 ¢z =m"” § to find the
N a"':c+ buly+ "z =m""
values of x, y, and z. - '

Multiplying the sécond by p, and the third by g, the equa-
tions become - ’ ’
. adz4by 4z =m -
panx +p uy +PC"Z =Pm, ‘ (A)
-~ q_a'"z‘l'qb"'y'i' qcnlz = qm’"- )
Assume now b 4 gb" = —U Q-
and . ‘ gcu—i 'gcl'u = — ', (B)

and we will have for the sum of the equations (A},
ax +’;q'fz-~,l__qalllz i m:+pmu+ gmni, . s
m'+ pml) + qmr.n : (C) !

e e=ede . 9

. ' it . .
. in which the only difference between ‘the numerator and.

denominator ig, that the former contains the.absolute quan-
tities m’, m”, and m'"’, in place of the coefficients of z, viz.,
a', a", and a"’. ’ ‘
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From equations (B) we readily find, as in last extmp!

"¢’ —b'c'"’ -
p= b — blncu’

bicll — bl'cl

and e e
which, substituted in (C), give

bre—b'e” b'e” —b"c’
’ n U
m + m b"c"'— blllcll + m b”c’" d_“_ bl"cll
bmcr — b:cm ~r b’c"——-— é"C'\
A bﬂdll_ b"'c" + d bncln_ bmcn
mbc — mlbn'cil + mnbl" C’— mnb: " +m”lbl ¢'—m"'b"c’
bl a:bncnl —a'b"e" + anblucl — aublc‘m + an'brcu - alllbl/cl hd

a' + a”

In a similar manner we may find
moa'mcn —~—m'a’ e +muarc’n_mr}anrcl +mmaolcl__,nmal ”
ba"c" ~ba'c” +b'ac” —b'a"c +b"a'c —b"ac"’
bl

and :
mla” " _ml alllbll+ m" a"lbl — mll al blll+ ml” a'b" m L’y allb'
z=c.~anbrn — clalllb" + C"a"’bl — cllal 7l +clualbr} _;_c:nanb, hd

If we examine the denominators of these values we will
readily see that they are identical, and consist of all the com-
binations of the coefficients of z, y, and 2, that can be made
by taking a coefficient of z, one of y’, and one of z, from the
successive equations ; the signs being alternately - plus and
minus.

The numerators are evidently the same as the denomina-
tors, except, that instead of the coefficients of that unknown
(Emntity to which the result belongs, the absolute mumber in
the same equation is substituted. ,

Now, if we arrange the coefficients as in the following
table, and take one from each column, proceeding diagonally
downwards and to the right, and then repeat the process
diagonally upwards, we shall form all the combinations of
the kind desired for the denominator. )

The denorhinator will be equal to the sym of the combi-
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nations taken downwards, diminished by the sum of those
proceeding upwards. Thus,
a b ¢
all bll cll o
al(lb"lclll
a bl ’
'I bl'

. 'The combinations dllwnwards and to the nght,
Ibll III’ allbl!lc alllbl II

Those taken upwards and to the right, are
a"b'c'"y a'bey @b,
And the denominator is o :
a'b’c'"'4a'"b""c'4 a''’b'c""— a"b'c"'—a‘b"’ Ne—a'"'b"'¢’,
as will be seen by comparing with the values before ob-

ta.lned

To obtain the numerators—that of y for instance—write
the numbers m’, m”, and m', instead of &', b, and &, in
the table, and take the products in the same manner. Thus,

S amc

. . a”mll "

. .alll Illc'l' .
o ame

a" m'’c".

. The numerator will be \
almllclll+allmlllc'+al”mlcll-— a”mlcllf— a’m'llc"_ alllmllc’
The sbove })rocess will be found very much to shorten

the process of. solution, in equations contmmng three un-
known quantmes.

Enxpus‘.‘
bx+8y+22=29) tofind the va-

Ex. 1. Given {224 6y—2z =14} lues of z, ¥,
- (82—2%Y+42=20 andz.

S
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First, for the denommator,

-5 3, 2
2 6—1,
3,—-2, 4,
6 38, 2

) 2, b,~—L

Positive products, 5 x5 X4 +2X—2X243x 8 x—1
. e 100 —8-—9 =83, -

Negative * 2x8x44+8x—2x—14+8x5x2
=24+10+30==64,

and the denominatoris . .
83 —64 = 19,

2d. For numerator of z, .
’ ’ 29, 8, 2, ©t
14, 5,—1,
20,—2, 4,
29, 3, 2)
14, 6,—1.
Positive products, 20 X 5 X 4414 X —2xX2+420x38 X—1
= 580 — 56 — 60 = 464.
Negative T 14 X3 X442 x—2 X —14 20x6+42
= 168 4 68 + 200, = 426. -

The namerator, therefore, is 464 — 426 = '38.

‘Consequently - &= - - 2.
19
Similaly the numerator for y is
(5X14 x4+ 2X20x2+8x29x—1)
- (2x29x4+5x20x——l +38x14Xx2)= =273—216= 57,
57

" and v .y‘l—g_a

Also, for z, the numerator,is - .

(BXEX20+2X—2X2I+IXBX 1)
—(2x38 x20+5x—2x l4+3x5x29) =510—415=95,
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and - 2=2—g=5.

. 3z—6y+ z=—-32
Ex. 2. Given 4 2248y ] ~ to find the
b+ Ty—R2z= 5
values of 2, ¥, and 2. . ‘ s

- First, The denominator °
=(3x8x—2+2x79<1+5x—6x0)
—(6x8x 142X —=6x—2+3X7Xx0)
=—84—64=—98. ‘

_ The numerator of z =
- (—32Xx8Xx—2+16X7x1+56x~-6x0)
—(Bx8%1416x—6x~=2+—382X7x0)
=624 -'232 =892. '
The numerator of y = .
(3x16x—2+2x5x1+5x—32x0)
—(6X16x142x—32X—2+8x5x0)
= -—86 — 208 = — 294. .
The numerator of z = _
(8X8XB5+2X7Tx—32+5x—06x16)
' —-(5x8x—82+2x—6x6+3x1x16)
= — 808 + 1004 = 196.

Therefore, CL
zg-sﬁ-—4,y=—-;—gg:=3andz=;!-g—g—-—2.

98
O 8£—0y+8z=4l"
Ex. 8. Given { —bz +4y + 22 =-—20  tofind the
llz—-7y-—6z=3‘7

valueofz,y,andz.‘ :
.Rm z-2,y=—8,andz=l
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_fiai’+2;=2l

Ex. 4. Given ”;z—sz-—es to find the values
' B2hy—z_g5 ‘
of z, y,and 2. o .
Ans. v =24,y =9,and z =5.
1 8 ‘ ‘
_z—§y+zz=4 1

3
Ex. 5. Given ? to find the

1 2
g?tgy—ir=—13
8z—2y +2z =2 J
values of z, y, and 2« : :
S Ans. =6,y =12, and 7 =8.

——
SECTION II. . .
Questions producing Simple Equations.

In solving such questions, it is impossible to give any
rules that will guide in all, or even in a majority of cases.
Almost every-thing depends upon the ingenuity of the stu-
dent, upon his habits of analysis, and a judicious selection
of the quantity to be represented by the unknown.

We should, after deliberately studying the question, fix
upon something as the quantity to be determined, and then
operate upon the letter by which it is represented, as though
it were known, and we wished to prove the result. We
will thus arrive at an equation which, when solved, will
determine the value of the required quantity.

Examrre 1.

-

To find two numbers in the ratio of 8 to 5; such that their
sum shall be equal to one-fourth the difference of their
squares, ’

This may be solved in various ways,
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1st. Let x represent the smaller number ‘ .
and y the larger; -

’

then we have x:y::3:5;oryx_=§-x

4 1 1
and i Yy — I:c’ =z+y,
dividing by 1y + 5 , we have
y—i=4: -
or, substituting the yalu‘e-of y, above determined, -
' S =iy,
et e
whence _ =6
‘and. - . y=§—'2=«103

or, more simply, thus,
Let 5z and 8 x represent the numbers,

then we have 5x-}73z=}(2515—91“’)\.:

or, . © B8zx=4a,

whernce . ’ =2 ' :
and . =10

as before. '

. 'The above sohitions lead tb the important remark, that in
selecting the unknowns we should endeavour to embody as
many of the conditions as possible in the numbers assumed.
. The following example affords a further illustration of this
rule, , ’

Ex. 2. To divide the number 116 into four parts, such that
if the first be increased by 5, the second diminished by 4, the
third multiplied by '3, and the fourth divided by 2, the results
shall be equal. . ' : - g

Let.x.—S, z+4, z and 22 represent the parts, I is

evident that all the conditioris, except the first, viz., that the
11
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parts make 116, are fulfilled by these numbers, whatever
value z may have ; the result in each case being .- It only
remains to fulfil the other condition, which lemls to the equa-
tion : s

z—b+42 +'4 +—§+2x=116;

or R X '13.1:-351,
whence ) S =27
mdthepartsare%,ﬁl 9and54

Ex. 8. Divide the number 49 into two such parts, that
the greater, increased by’ 6, may be to the less d;mxmshed
by 11as 910 2.

Let  9zr— 6 = the greater
and ' 2r 411 = the less..

These fulfil the last condition, since the first + 6= 9 -z and
the second — 11 = 2 &, which results are as 9 to 2.

The first condition gives . —
9z—642%x+11orllx+5 =49, -
whence z =4

and - 2z 411=19.
Another Solution. ° '

haLet:c= the greater, and 49-—3::4: the less, then ‘we
ve
z+46: 38—3:..9 2,
whence (Art. 47) z 4 6 : 4::9:11
and - (Art.46) 2z +4+6:4:: 9: 1,

whence -~ z46=36
and . z =30
o - : 49—1'_19

Ex. 5. A courier havmg been gone 6 days, travels 60
miles per day. A second is then sent to overtake him, and
travels 80 miles per day. In what time will he overtake
the former, and how far ‘mll they have travelled ?
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Let . z = the number of days the second travels;

"then 4 6= the number the first travels ;'

- 80 x = the number of miles the second travels;
and 60 (z + 6) = 60 x 4 360 = the number the first travels.
Hence 80z =60z 4860 - ‘
and 20 .‘I.‘ == 360,
or Z == 18, the number of dnys,

80z = 1440, the distance.

Ex. 6. Says A to B, give me 10 dollars of your money,
and I'shall have three times as much as you, What was
the amount éach had, supposing the whole amount is $110.

Let z = the number of dollars A had,
then 110 —z = the number Bhad,

Then, after B had given 10 to A, they would have z + 10
and 100 — z, respecnvely. .

«. by the question
z+10=3 (lOO—x) =300 —8 z,
or 4.7 =290
and Z == 72} the number of dollars A had,
110 — 'z = 374 the number B had. .

Ex. 7. A gentleman whose property is all invested in se-
curities bearing 6 per cent. mterest, spends-# of his income
in his househo%d expenses; 3 of it in clothing. The balance,
which is $820, is laid out for charitable purposes. What is-
the value of his estate. -

Let x be the value of his estate in dollars,
then >z i is his yearly income,

100
g—of ;) = the sum spent for household purposes,
1 .2
7 of =80 60 = the sum laid out in clothmg

Comeque'ntly:0 100+ +&0

Multiplying by 800, to clear of fractions, we have.
: 16 2 =9 z 4 6 = + 246000,
whenea z = 246000, the value of the estate.
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Ex. 8. A can perform a piece of work in 20 days, B and
C can together'do it in 12 days. Now, if they all work for
6 days, C can finish it in 3 days In what time would B
or C have done it alone?

Let z = the number of days which B would require,
and y = the number C would require,

then ;and!-l- are the pam of the work which each will

perform in 1 day.
The three will therefore, in the 6 days, do
. 6 6 6
20+ +

6 6 8 6
Cme‘l‘lenﬂy’w+z+ yty= 20+z+y will re-
present the whole work.
4 12 12

also, — + wil] represent the whole work since A and B'

do it in 12 days. We have then the equatlons

12 + 12
. 6 6 9
and 20-1- —+ v =1 )
Multiplying the last by 2, and transposing, it becomes
18 7 ’

+;=5 ,
whence, by aubtmctlon. = :; ‘
and y = 15, the number of days C reqmm H
also, ‘% == 60, the number B requires. :

2d Solution. 8ince B and C can do the whole work in
12 days, it is evident they will do the half of it in 6 days;

20

also, A in 6 'days does -2- % of the work ; hence the three

4 — of it in the 6 days;

wxllperform +10 5

U
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~

and since C in three days does the —th part we will have

whence 8.1 T ¢
. ) -y b ’
and " y=15,1as before,

also, since 12+ 12 l we have, by substxtutmg the vdue

of y, and clec.nng of fmctlons,
A . z =60.

Ex. 9. The specific gravity of tin being 74, snd that of
lead 116. Re?ulred the number of pounds of each metal
in 8 mass of der weighing 120 Ibs., of the speclﬁc gra-

vity 8.

Note. The speclﬁc gravxty of a bod is its werght com-
pared with that of an equal bulk of distilled water, at the
temperaturé of 40° of Fahrenheit.

‘The specific gravity.is obtained by determining the weight
of the body in the air, and then weighing it in water, the.
loss being the weight of an equal bulk of water. Having
thus found the weight of the body, and also that of the same
volume of water, the former of these is divided: by the latter:
for the specific gravity.

- Thus, suppose a mass of a certain mmeml welghs 14 oz.
in the air, an 12 az.in water ; the loss, 2 0z., is the weight
of an equal'fbulk of water. Hence _l%l =7 is the specific
gravity. - .

In the combinations of dlﬂérent metdls, the spécific gravity
of the compound is not generally the mean between those of
its oonsmuents, as the present question supposes, but it
is rather greater in most cases. The amount of conden-
sation in each -instance can’ be detenmned only by ex-
periment, _

Let x be the number of pounds of tm2
and y of lead. _
11*
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Then the weight of the water ‘displaced by x ponnds of
tin and y pounds. of lead will be respectLVely

Y
74 and 713 115

.Also, 120 Ibs. of the solder, of the .sl;eciﬁc gravity 8;,
will displace lm-;-84 == 14 Ibs. of water.

We therefore bave the eqﬁahons
x4+ y = 120
ud =14
ratis=
Clearing the last of fractions, it becomes
152474y =1191,

bat - . . . T4X4T4y=8880,
whence 41z= "~ ' 38034,
and - 2 =='74 = number of pounds of tin, '
KO 3 =120—z == 46, number of pounds of lead.

Ex. 10.-A person has $10000 invested in the stock of °
two banks, A and ‘B. The first year the institution A, in
which the smaller sum is invested, divided 2 per cent. more
than the other. The second year the dividends made by A
were decreased, and those made by B were.increased 1 per
cent.; the receipts from both together being thus increased
by 1th of their former value. The third year B divided the
same as the second year, and A" the same as it did the first,
the whole being by this means increased by 1d of its original
value. What was the sum invested in each bank, and the
Tate per cent.?

Let, T= the less sum,

». . 10000— z == the greater.

Let y+ 1 = the rate-of dividend on the less,
o y—1==the rate on the greater. . .
Then :v(y+l) (10000-—1:3 (y—1) :c+100y‘

—~ 100 = the whole amount of dwldend tha first year,
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29 4 (100023 — 100y = thé amount of divi
dend the second year. o

E+lOOy—100+LI(5—0+l'OOy-b-l(.JO)ﬁIOOy,‘
or ~%—100+A%6+-%59—25f0:
. z e ‘
wheneo - g5 Wy =135, . s
and . 241000y=5000. . (A) -

* Again, the whole dividend the third year is
:c(y+1) (10000 —z)y = . ...
100 T. 100 - —wot 0%
And this being equal to the 1st years dmdend. increaged
by 3d, we have.

50+ 100 y-loo + §(50+100y—100) - + 100y,

Y

Qx' . — 20 + 100 y 400
Subtraeung 10 times this from equatlon (A), we- obtam
- % T = 1000,
" whence 2 = 2000 = the sum in the 'bank A,

and 10000 — z = 8000 = the sum in the bank B:
Substituting the value of z thus ‘obtained in equatlon A,

we obtain -
y= -
whence y +1=

8. : ’
2§ the ra.tes of mtereu

Ex 11. A mxller had some wheat, whxch cost hlm $1.10
per bushel, and some oats, which cost 75 cents per bushel,
He ground them together, and made 19 barrels of flour,
which he sells for $53.997 per barrel, thus clearing 14 per
cent. on the cost; the value of .the bran being considered
equal to the cost of grinding, packing,&c. Now, supposing
5 bushels of grain make a barrel of flour, how many bushels
of each-kind did he grind o
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Let 2 == the number of bushels of wheat, -
and  y = the number of rye,
then 2 4+y=19x6=95. = (A)
Also 110 z = the cost of the wheat, .
and 76y == the cost of the rye.

- 1!02+75y+%(110x+75y)

-1?-%-4::+l;ly-the pnoe for which the
flour must be sold. a
1254 171

z+ y-5997x19=118948,

or 1254z+856y—113943.

But (A) 885z 4 8556y = 81225,

hence 899 z = 32718, .

and 2 = 82 = the number of bushels of wheat,
*. y =2956—2 = 13 = the number of rye.

Ex. 12. “;fd beto find four dnumbers m] arithmetical
progression, whi ing increased respectively by 2, 4, 8
and 15, shall be in geometncal progresslp::! y T

Let —2, 2y —4, zy*—8, and 2y*— 16, be the num-
bers. It is evident these fulﬁl the last condition, since in-
creasing them by 2, 4, 8, and 15, makes. them

x, XY, zy’ , and zy3,
w}ncharem etrical progression. It only mmamz,then.
to detem'une g:e:lxl:d Y soi:hat the numbers shall be m anth-
metical ion.
We , therefore, have (Ast. 58), .
Yy + —10=2zy—8 . N
oY+ 2y — 19 =22y —16."

Mulnplymg the first by.y, it becomes .

oy +ay—10y =22y — 83«
whence 10y —19=8y—16,
or- - A2y-3,\

and - y-g.
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Substituting »t(hisj in one of the original equations, we obtain
. . x =8, .

‘Whence the numbers are readily found to be

. 6, 8, 10, and 12.

. Ex 18. Divide the number 25 into two such parts that
one may exceed the other by 5, What are the parts?
o ‘ Ans. 10 and 15.

Ex. 14. The sum of $5500 is to be divided between
A and B, in such proportion that A will receive an eagle as
often as B-does a dollar. 'What will each man’s share be ?

T - Ans. A's = $5000. B's = $500.

Ex. 15. The number 75 is divided into two parts, such
that three times the greater exceeds seven times the less by
15. What are the parts? . _

.- .o Ans. 21 and-54.

Ex. 16. 1200 dollars is to- be divided betweep A and B,
g0 that A’s ghare shall be to B’s as 2is to 7. How much
should each receive ? ~

Ans. A, $2662, and B $9333.

Ex. 17. A vintner wishes to fill a cask containing 125
gallons with wine, on whichhe will be .able to clear 16 per
cent. by selling it at 92 cts..per gallon. He has two parcels
which cost 70 cts. and $1.50 per gallon respectively ; how
much of each kind must he take ? _

JAns. 16§ galls. at $1.50, and 1093 galls. at 70 cts. -

Ex. 18. Required to find four numbers, such that } the
Ist, 3 the 2d, twice the 8d, and i the 4th, may be 213 ;
twice the 1st, 4 the 2d, } the 3d, and 3 the 4th, may be 15;
the first, twice the 2d, three times the 8d, and 3 the 4th, may
be 40; and the sum of the numbers may be 26, -

T o : . Jns. 4,6,7,and 9.

.Ex. 19: Aand B desiring to purchase a house jointly,
have just sufficient money in bank to pay for it. A saysto
B, If I had twice as much as I have, and 3 of yours, I could
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pﬁmﬁase it alone. B says, If I had half yours, and $1000
in addition to what I have, I could pay for it. What had

each?
JAns. A $2000, and B $3000.

Ex. 20. Purchased 25 Ibs. of sugar, and 36 of coffee, for
98.04, but the price of each having fallen 1 cent per pound,
I afterwards bought 2 1bs. more of the first, and 8 Ibs. more
of the second, for the same money. What was the price of
each? : Ans Sugar 12 cts.

77 2 Coffee 14 cts.

Ex. 21. AaudBngree to reap a field in 12 days, A be-

ing able to work only  as fast as B. Finding they would
be unable to finish it, at the end of 6 days they call 1n-C, by
whose aid it i8 performed in the stipulated time. Now had
C wrought from the beginning, they would have reaped it
in 9 days. In what time would each have done it alone ?
4ns. A in 314 days, B in 42 days, and C in 18 days.

Ex. 22. A can perform a piece-of work in a days, B in b
days, C in ¢ days, and D in d days. In how many days
will they finish it working together ? - A

Y PA...... da
. P e + abd + acd + bed T

Ex. 23. A and Ben to finish a'piece of work in 15
days, but after 7 da{ls, finding they would be unable to ac-
complish it, they call in C, by whose aid it is completed. in
14 days. Had C warked with them from the beginning, the

three would have done it in 104 days. - In what time would

~

C alone have done it. - .
o JAns. 21 days. .

Ex. 24. Bought linen at 60 cts. per yard, and muslin at
15 cts. per yarl, amounting in all to $11.40. "I afterwards
sold # of the linen and } of the muslin for $3.89, havin
cleared 29 cents by the bargain. How many yards of eacﬁ
did I purchase ? o :

Ex. 25. Bought 10 cows and 15 sheep for $215. I after-
wards purchased 5 cows.and 7 shegp for $107.50, the cows

Ans. 16 linen, 16 muslin.
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costing Ol a head more, and the sheep 50 cts. a head less than
before. What were the prices of the first lot?
. Jns. Sheep $3, cows $17.

Ex. 26. There are two numbers in the ratio of 6 : 4; but
if each be increased by 20, the-results are as 9 : 8. What
are:the numbers ? . - Jns. 25 and 20.

Ex. 27. What fractlon is ‘that to the numetator of which,
if 1 be'added, the.fraction will equal -, but if 4 be added to
the denommator, the fraction becomes 1 ? Ans. 7.

Ex. 28. A and B can do a piece of work in 15 days.
When it was § done, the called in C, with whose aid the
wark was finished in 12 days. In what time could C alone
have done it?- - - ] Ans. 15 days.

Ex.20. Acandoa plece of work in 20 days, and B and
C can together perform it in 12 days. Now, if all three
work for 6 days, C.can finish it in 8 days. In what time.
would B or C ha.ve perform.ed it?

) JAns. B 60 days, C 15 days.

Ex. 30. A, Band C can perform a piece of work in12 days.
But after A and B had worked together 7 days, C finished
it in 21 days. In what time Woulgeeach have done it sepa-
rately, supposing A. can do as much in 4 days.as Beanin 5?

.dna. Ain 33»}, Bin 42, and C in 333.

Ex. 31 Two men, A and B, agree to finish a plece of
work in 12 days. But after- they have worked together 6
days, finding they will be unable to accomplish it, they call
in-C, and the three finish the work in 12 days.. Now, if C
had worked with A from the beginning, the two would have
accomplished the work in 14-days, and Band C would have

. done it in 11 days. In what time would each have done it
alone? .ﬂm. A in 5314, Bin 26.%, and C in 1833,

Ex. 82. A sets out 6n a journey, and travels at the rate
of 25 miles per day. When he has been gone 10 days, B
starts in pursuit, and travelling each-day lO miles further than
he did the day preceding, overtakes A in 10 days.. How
far did B go the first-day ? - dAns. mlles.
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Ex. 83. Four numbers in arithmetical progression, whose
sum is 32, and the sum of then: squares 336. What are the
. numbers? Ans. 2, 6 10 14.

Ex. 34, The sum of five numbers in anthmeﬂcal progres- .
sion is 160, and the sum of the square roots-of the extremes
is 12. What are the numbers ? Ans. 16, 32, 48, 64. ’

‘Ex. 85. The sum of the square roots of the means of: four
numbers in atithmetical progression is 19, and the difference
of the extremes 171. What are the numbers ¢

. ﬂna 7, 64, 121, 178

Ex. 36. There are- four numbers in anthmetlcal progres-
sion, such that the difference of the extremes is to the sum
of the means as 3 to 11. The sum of the first and third is.
30. What are the numbers? - /Ans. 12, 15, 18, 21.

- Ex. 87. There ate five numbers in arithmetical pfogres-
sion, whose sum is 40, and the sum of the square roots of the
first and last 12 What is the common difference ? --

Ans. 6 v —26.
A "The quesuon is therefore 1mposs1ble

Ex. 38. 'I‘here are six mumbers in arithmetical progres-
sion. The sum of the second and'fifth is 148, and the dif-
ference of the ?uare roots of the extremes is 10. -What
are the numbers © o JAns. 4, 32, 60, 88, 116, 14.

Ex. 39 There are four numbers in'arithmetical progres-
sion, which, béing increased by 2,3, 9, and 25, respectively
become in. geomemcal progressmn. ‘What are the numbers? .

. oAns. 3, 7, 11, 15,

Ex. 40. There _are two numbers in the ratlo of 2to 3,
and their sumisto the sum of thelr squares as b to 78.
* Whatare they? : - - Ans. 12 and 18..

Ex. 41. A certain number is _equal to 4 times the sum of
its digits, and if 18 be added to it, its dlglts will'be inverted.
-What is the number? Ans.' 24.

Ex. 42 A traveller states that he has, durmg the last
week, travelled 1326 miles ; and that he has gone 2} times -
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ag far in steamboats as in stages, and } as far in railroad ears
as in steamboats. How many miles has he travelled in each
of the three ways? . - L. ; :
, - '#ns. In stages 306 miles, in steamboats
" " 765 miles, and in cars 265 miles.

- Ex. 43. A ‘butcher slaughtered } of his sheep, and ‘then
bought 4 mere ; he then killed 1 of what he had, and-bought
8 ; after this he killed } of what he then had ; after which
he has but 20 left.- . How many had he at first? -

. - : Ans. 80.

Ex. 44. A and B can- finish a piece of work in 15 days,
but after working 6 days, B was taken sick, and A finished
it in 80 days. In w time would either have done it
alone?! . . Jns. A in 50 days, and B in 213 days.

Ex. 45. A farmer has mixed a certain number of bushels
of corn and oats. Had he had 6 bushels more of each,
there would have been 7 bushels of corn to every 6 of oats ;
but if there had been 6 bushels less of each, then he would
have had 6 bushels of corn for every 6 of oats. How many
were there of each ?. Ans. 78 of corn and 66 ef oats.

Ex. 46. Divide 198 into five such parts, that the first in-
creased by 1, the second by 2, the third diminished by 3,
the fourth multiplied by 4, and the’ fifth divided by 5, may
all be equal.: - . JAns. 23,22,27, 6, and 120.

"Ex. 47. A certain number consists of two digits, and is
:gual to the difference of the squares of its digits. 1f 36 be
idded to it, the sum will be expressed by the.seme digits in
an inverted order. 'What is the numbeér? Ans. 48.

Ex. 48, There are four numbers such, that the first mul-
tiplied by the sum of .the other three is equal to 26; the
second multiplied by the sum-of the others is-equal to 36;
the third multiplied by the sum of the others is equal to 44;
and the fourth multiplied by the sum of the others is equal
to 54. What are the'numbers? = ns. 2, 3, 4 and 6.

‘Ex.v49‘.,A,grocer mixed tea which cost 75 cents per
pound with some which cost 655 cents per pound, and sold
12
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the whole for $77.621, gaining thereby 12} per cent. How
many pounds were there of each sort, the whole number
being 100 lbs? JAns. 70 lbs. at 75, and 30 at 65 cts.

Ex. 50. A certain number, consisting of two places of
figures, is equal to seven times the sum of its digits, and if
18 be subtracted from it, the digits will be inverted. 'What
is the number? - . JAns. 42.

Ex. 51. There are four numbers in arithmetical progres-
sion such, that the product of the extremes is 36, and that
of the means 54. What are the numbers

: v JAns. 3, 6,9, 12.

Ex. 52." Tlhiere are four numibers in arithmetical progres-
sion, whose common difference is three times the first num-
ber, and whose sum is 44. _What are the numbers ?

Ans. 2,8, 14,20, ‘

Ex. 63. A and B commenced trade with equal capital.
A gained 25 per cent. of his stock, and B-lost 'a sum which
was 2500 dollars more than A had gained, when it was
found that A’s money was double B’s. What was their
" capital ? . JAns. $20,000.

Ex. 54. There are 4 numbers, such that if the first be
increased by 1, and the last diminished by 2, they will be in
arithmetical progression: their sum is 29. Required the
numbers. . . 'fns. 3, 6,8, 12.

Ex. 53. The sum of the first and third of four numbers in
geometrical progression is 60, and that of the second and
ourth 180. Required the numbers.

. : : . /ns. 6,'18, 54, 162.

Ex. 56: Some smug lers found a-cave that would exactly

hold their caﬁo, consisting of 13 bales and 83 casks ; while "

they were unloading, a revenue eutter appeared, on which
they. sailed away with 9 casks, and 5.bales, having filled i
of the cave. How many bales, or how many casks, woul
the cave contain? . JAns. 24 bales, or 72 casks.

——
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- Ex. 57. Hiero, King of Syracuse, having ordered his
jeweller to make him a crown of gold, and suspecting that
e had put in some silver, directed Archimedes to examine
it. ‘When weighed in water, it was found to lose 1} Ibs.
Required the number of pounds of silver it contained, the
specific gravity of gold being 19-64, and of silver 10-5, and
the weig{:l of the crown 20 lbs. - . JAns. 522 lbs.

" Ex. 68. Wishing to obtain the specific gravity of a mine-
ral lighter than water, I first found its weight to be 15 oz.
Then, having attached it to a mass of lead weighing 20 oz.,
the whole was found to lose 21 eunces when weighed in
water. ‘Required the specific gravity of the mineral, that of
lead being 11-6. . o Ans. “T79 nearly.

Ex. 59. A piece of alloy weighing C pounds, of the specific
* gravity of ¢, is composed of two metals, A and B, whose spe-
cific gravities are ‘a and b, respectively. How many pounds
of each does it contain ? '

a b(b— ¢)

JAns. c—(b_-—'a_lj C pounds of A, ;
b (c—a) \
and, "_"(-b_—_;) C ?ounds of B.

Ex. 60. A and B engage in trade. A gains $1500 and
B loses $500, when A’s money is to B’s as 8 to 2; but,
bad A lost $500, and B gained $1000, then A’s would have
been to B’'sas 5 to 9. t was the stock of each?

: JAns. A’s $3080 and B’s $3500.

‘_'*.__
SECTION I

Pure Equations and others which can be solved without complets
qual * Yhe Spuare. A completing
126: The only difficulty in solving equations of this class
consists in reducing them so that the power mag stand by
itself. This being often difficult, we have aﬁpen ed a num-
ber of examples, the solution of which will bring before the
student most of the meéthods.which are einployed in such-
cases. 'As he will probably require very frequent assistance
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from his teacher on first passing over the subject, he should
be required to review his werk until the methods have be-
come thoroughly familiar, He will thus have acquired a
knowledge of analysis which will be of t service, not
only in pursuing the remainder of the work, but also in the
study of the hig r branches of pure mnthemntlcs.

Ex. 1. leen a‘+2 azx+x%==b%, to find the value of 2.

Here the first member being a- aquare, we extract the
square root, and obtain

- ata==15
whence . - ‘ :c=-:|:b—a.
+a
_ Ex. 2. Given J( )+ ‘/(z-{-a )
to find the value of .
Multiplying by V. (z + a) to clear of fractions, we have
z4+a+4+2vVaxr=b%,
Extract theroot, and /2 4+ Vo=£bV/ 2,
» va
whence VT = — =0
: _ a =
aad. ==TLoyr
Ex 8. Given z%y + xy® = 1807 to find thevalues of 2
and . 24y =189 andy.

Addmg three times the first to the second, we have
43y + 8 ayt + y2 =129,
whence, extracting the cube root,
z+y=9.
This divided into the ﬁrst, nges _ i

Bat, . s +2zy+ -=81
;md T ) 43:%0
whence =~ & 2—%uy+yi=1,
Bt - z4y=9
. : o 2x=10o0r8,
and : ' 2y=8or10; —
Hence : x=bor4-

and y=4orb.
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Ex. 4.Givenz — y =6
z* y’ 2l}toﬂndthenluesofzandy

and ——

Cleanng the last of ﬁ'acnons, we have

o —y* =21 2y,
whence, by d1v1d1ng by the first,

2+ a2y +y° ==4—*’.'/

Bat z* — 22y + y* = 36,
. o
N ; azy’—”y—%’
also, ='+zy+y~-—zy=2sz,
.- 24 2y + =8,
from this,and . - . z—y=6.
we obtain e z=12
Ex5.vaen:c‘+ + =A93 : '
and 1‘+z£yy‘+g‘ ml}wﬁndthe values
of z and y. e
Dividing the first into the second ~
whence T » gxygw~
and =%1 )
w'+2zy+y’=121

. - CP—2zy+y =9, .
Consequently  z4y=11 =7
and RS ‘z—g= 3§whenoe{ A

J +¢(z—a)
Ex. 6. leen‘/ —\/(z-—a) o ,toﬁndtheva-

lue of 2.
If we multiply the numerator and denominator of the first -
member of the equation, by / & + v/ z — a, we wxll have
‘ (¢x+J(H))'

z.—-a

12*
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n's*
whence (Vz+vYz—ayr=7_,}
- na
Extracting the square root, JI+J3—.=iJT:)
Clearing of fractions Vz* —ar+z—a=:1na
- VE_a=ains—z=(ltn)a—1

and 2% —ax = (1 + n)'e* — Y1 L n)ax +z*
whence (1+2n)z=(1+tn)e
i ,_(1knya
T T 142n.

—3

. z*+3 : _ b
Ex. 7. Given / 2 b')—J = .
If we multiply each member of the equation by -
43
v + b‘)+~/( ‘)remembenngthtthedxﬁn-

ence mnltlplxed by the sum gives the difference of the
squares, we will have

B e IR

or __=z~/ {‘/(z’+3b‘)+y((z‘—3b‘)§

=435 70 — 3 ,36’
‘/( 4 )+' 2:‘/6

whence

Adding the ﬁrétequation,ivehave
243b% 3b°
YW e WAL P

squaring z‘+36’=gﬁ+3b'+—

‘Whence, m.ncellmg 8 0%, and clearing of fmctlons, we have

4 et =9 Bt 4 4 b2
: o _9be by
and e 4(c—b) = )

whence = s/‘—— Y (c — b)
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Ex. 8. G1ven zy = 320 gy
and - _ z—y)s: 61 :1¢ to find the
values of nn}cli ¥ ( I }

Dividing -the lst and 24 te of the proportion. b
#—1y, it becomes e Prope Y

2y +y: m’—2z~y+y’ 61:1,

whence z'+zy+y'=6lw’—l22:zy+6ly’,

or - 60$’+60y = 123 2y = 30360,
O :c’-}-y ==656, :
but - Rxy =640,

whence z'+2my+y’=l296
and P*—22y +P=16.
Consequently a:+y._86§ whence §x=2o .

and z—y = y = 16.

Ex. 9. Given (z*— z =32y '
and - e _y’g Ez’zg ; = W} to find
- the values of z and y

Dividing the 2d by the Ist, we_Have

(#+y) x(z+y) =162y,

or w’+zfy+{ty¥+y8_=l5zy! .
butfrom 1st  &*—a'y—zy'+y*=38ay, = - (A)
whence . Zay42 zy*=122y, .
or ‘ . Z4y=6. )

Dmdmg this mto (A), we have a . .

' BBaytymzzy, B
R A B -
and Eya 8, -7
whence (B) C 29— zy+y’= 4,
and _ r—y=2.

.Buat _ | .. o4y=86,

consequently ze=4 and y=2.
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Ex. 10. Given z:izg',zx?y’i?g?ﬂz to ﬁn,d the values
of z and y. ‘ 4 »
Assume Z= vy This substituted in the equations they
‘vecome v‘y'-l-vy’yv = 208,
and Y+ /v =1053. .
Dividing the latter by the former, we have ,
V4o v vt ve 16 -
1 -t :;o' ,yl j-j;v' o é""”'81' ’

z 8
This substituted in the Ist eqqa_tl_on, gives -
: 64 8 8
¥ t 57y V¥t =28,
‘ 64 16 . 208 '
o oY + gy thatis gyt =06,

Y= 729andy=:{:27,
consequently z=;ﬁy +8.

2d Solution. The eqnations may be written

- V(Y YY) =
and efy‘(v-r’ + Vy) = 1053,
W08 16
whence by division é’y‘=1053—ﬁ :
oo z 8
and §=2,-—7asbefore

Ex. 11. vaen z;y.'l=35 toﬁndthava.luesofécaﬁdy
’ ~ JAns. 1‘=9’ y=5

‘Ex. 12. Given 3;i'yy—;(l)§toﬁndthevaluesofz‘andy
: o - Jdns. =7, y=38.

Ex. 13. Given 5.1:+3y %}mﬁndthervalues of

and y. Y- aAns. 2 =9, y="T.
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Ex ]4 leeu 727+ y-zsgmﬁndthe values. of
xy =42

andy. ) T .ﬂna,z=8,y=l4.

Ex. 15. }Gmen am+by==0} to find the’ values of z

and y. - - : c+~/c’ 4 abd
- e r=—"3%a
R c—\/c’—‘labd
_ ‘ Y=y
Ex. 16. Given w+y=3’—.'l==“‘b}t(,ﬁndthevalues
. =’

of z and y. Ang. a:‘= L \/(a_-l-lj), y"“"'":l:. C.s/ (:_;__z

Ex. 17. leen z8 —zy=21§ to find' the values of x

'and

Ex. 18. Given a7 4 3% : 2% — y’ }mﬁndthem

-1 f z and v
ues of zand y. . o z-cv( ),=c¢ a+5

_b,toﬁnd the va-

heofza . ﬂm‘ z\q:l: ‘\/b’— .
Ex. 20. Given . -
V(@ ) — V(”—V”) "(z+¢ ) tofind

the value of 2. dns, = ?_g.

\/x+’a+a/z—a '

Ex 1.
2 Gven\/;,;.}.a._s/m—-a . ;
} » . a $

= b, to find the value

of :c.
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. a . : a ’ Vb
. 22. = —-,to
Ex Given e—vVo—z a+ s/aﬂ—z‘ x8

find the value of 2.
Ans. z = :!;2'—“ via—p.

Ja— \/a
. Ex. 23 Given, =a,tofmdthevalueofz
1ye Ja+va—2

Ans. xn( 2"1

Ex. 24. Given M =9, {o find the value
\/43—]-—“4 R
_of x. - S : 4
. L Ans. z4=9—

'Ex. 2. Given & +"‘/{a’+‘/(a’z’ z‘)}

toﬁndthevalueofz : dns. z=2a.
Ex. 26. Given 2° 4 2y=60) |,
s 13/+.'/°=84 to ﬁfld the vﬂues of
zand y. - . dAns. z =5, y=17.
Ex. 27. Given J(—+b’)-—,/(——-b’)=b to find -
the value of z. - R 2a
- - b¢5

Ex 28 Given z‘-—zy=48y tﬁ find ‘the values of

zy-—y' =3z
. zand y. ‘ dm.zalﬁor—%s‘.
SR 12
y=4 or. 5

a

Ex. 2. Given 2 210 oo )T 4

z4a :c+a’
find the value of .
~ Jna. z—(b:l:l)’
Ex. 30. Given 2°+y/ay=
' y,+g¢g_lsfmﬁndthemuesof
zandy. Ans. r=+1, y=314.
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. Ex.'81. Given. £z“+y'-ggw+y;=2336§‘w find the va-

' —y')(r—y)="576

luesof.tandy. Ans. x=110r 6

' Y= 6orll.
29
vn.luesof:candy o JAns. z-—-?.y==6
Ex. 33. leen o4y + z+4y) =68
+§, gt'/z(,=12+3y,§ to find the

values of z and y. Ans. z=4or2

’ y=2or4

Ex 84. Given

9Vz+y+9*3’z+y 8
8 y 8 = 7

TVz—y TVz—y
. 4y 4 =z 9
valuesofzandy. : o -9 7.

L Ans. & = Y=g

t find tho

127, Problema producmg Pure Equations.

Enmns.

Ex. 1Tt is required to divide the ‘number 24 into two
parts, whose squares shall be as 25 t0 9. -
Let: - - = the greater part, ;
then 24— 2 == the less part, o
and o (U—x)::25:9, - L
whence = : 24—z :: 5 :3.

O = 8zr=120—5z,
KR z=15
md Uz =9 }the parts Tequired.

Ex..2.-The number of square feet ina nght-an led tri-
angle is equal to the number of feet in its three sides, and
the square of the number of feet in the hypothenuse is less
than the square of the sum of the other two sides, by half
the product of the number of square feet in the area, by the
number of feet in the base. Required the three sides,
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Note.—The square upon the henuse is equal to the
sum of the squares on the other sides, and the area is equal
to half the product of those sides.

Let & = the number of feet in the base,r
and "y =the number in the altitude,
then /294 y* = the number in the hypothenuse,
and %y &= the number of square feet in the area.
_ %=z+y+s/z’+y’,-
e . a2
ad o ty= ot 2ayy—TY,
by transposition a%y =2 ;'cy, , ’
and .z =8 .
Hence, from the first equation dy=8+y+ Vv 64+ Y
wherefore © 8y—8=v6i+
and squaring  93°—48y + 64 =64 + y*,
- ] . .S Y= 48, }
and ' .y =6.

Consequently the hypﬁthenuse == 10.
.+.- the sides are 6, 8, and 10 feet respectively.

Ex. 3. A farmer has two cubical stacks of hay, of which
one contains 117 cubic yards more than the other. Required
the dimensions of each, the side of the larger being 3 yards
longer than that of the other. ' . 4

Let 2 = the number of yards in.the side of the other;
and y = the number in the side of the smaller,

then : Cr—y=3

and - L@—ypr=17,
dividing the second by the first, %+ 2y + y* =39,
and squaring the first : S —Qzy +yr=.9,
.. by subtraction R 3 zy = 30,
and - : - xy=10,
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now . x4 xy + y* =39,
.+ by addition ‘B4 2y + 28 =49,
whence . ‘ zHy=1,-
but . B L m—y=3,
A m=5andy=_—2..

Ex. 4. There are fouir riumbers in-‘geo'rde‘trical progres-
sion, such that the sum of the extremes is 56 and the sum
of the means 24. What are the numbérs?

Here let = and 3 represent the mean'é.

then the extrén;es will be ;mdg,

Y

o o '.‘D + y =%
o .
Clearing the last of fractions, A ’ .
cubing the first  2° 4 8zt + 8xy* + 1° = 13824,
.*. by subtraction 82y +38 ry = 13824 — 56 2y,
dividing this by the first ‘equation 8 zy =576 — ;zy,
clearing of fractions Y 9ay=1728 —Tay,
whence T zy=108.
But from the first = 2*4-2zy + y* =576
and ' 4y = .. 432
" .+ by subtraction = 2zy + Yy =144,

and ‘ r—y= 12
But - ‘ Lt y= A,
o ’ ! z=18,y = 6,

£=. 54’ 2“’= 2,

y z

.. 54, 18, 6-and 2 are the nqmbers’requir'ed.

‘Ex. 6. A person has two.pieces of land, one in the form
of a right-angled triangle, and the other in that of a rectangle,
the longer side of which is equal to the hypethenuse of the
triangle, and the other to half :;he greater side ; but wishing

, 13
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to have his land in one piece, he exchanged for a square
piece of equal area, whose side was twice as long as the
shorter side of the rectangle. By this exchange he has
saved 25 poles of fencing. What are the areas of the tri-
angle and rectangle, and what is the length of each of their
sides?

Let 2 x == length of the greater slda of the trmngle, and
y == that of the less; .

then V47 4 y* = that of the hypothenuse;
*. zy == the area of the triangle,
and z v 42z° + y* = the area of the rectangle;
also 2 z = the side of the square, ’
. =Y +zv 41" W,
or dr=y+ Vi Ly ()
Again 8z = the perimeter of the square,
‘8z + W= 2z+y+~/4x‘+y’+22+2s/4z‘+y',r

or 4z 4+ W=y +3VIr + g,

but (A) 12z _3y+3\/4:c'+y,

o S8z — 25=2y, - .

and by transposition 8 z —2 y =5,

but from (A) - 8x—2y—2s/4z’+yﬁ.
VAT + =25 )
and - 16 2% 4 4y = 625;

and substituting the ‘value of 2 ¥, obtained nbove,
16 2° 4 64 2° — 400 = 4 625 = 625,

whence ’ : 802 =400
and . ‘ N =05,
also y= 8—"‘:—;——26 7}

-, the sides of the trianglé are 10, 7& and 124 rods; the
sides of the rectangle 123 and 5 rods; and the areas of ‘the
triangle and rectangle, 374 and 624 square rods respectively.

Ex. 8. It is required to divide the number 14 into two
such parts that the quotient of the' greater divided by the
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less, may be to the quotient of the less by the greater as 16
to 9. . : : oo . Ans. §and 6.

Ex. 7. Bought a number of oxen for 1406-25.dollars, the
number of dollars per Lead being to the number of oxen as
9to4. How many did he buy, and what did he give for each ?

_ © - Jns. 25 oxen, at $56-25 per head.

Ex. 8. There are two numbers whose sum is-to the less
as 90 is to the greater, and whese sum is to the greater as -
40 is to the less. What are the numbers? - . -

) ’ vIns. 36 and 24. .

Ex. 9. The sides of a i'éctangle are to each other as 5 to °
7, and its area is %6 A. 1r. 35 p. How many rods are
there on each side ? ) #Ans. 65 and 77 rods.

Ex. 10. A-has a rectangular tract of land, the four sides of
which measure 836 rods, from which he sells a rectangular
portion containing 2 A, 8 r. 25p. Required the dimen-
sions of the smaller piece, its length being 1 and its breadth
} of that of the whole tract; and what is the content of the
whole? R
JAns. Length 31 and breadth 15 rods; contents of

“whole tract 43 A. 2 r. 15 p. . i ’

Ex. 11. A merchant purchased two pieces of cloth, one
of which cost 1 and the other 1 as many dollars per yard as
there were yards in its length.. Now, had the whole been
bought at the price of the first, the ‘cost would have been
$315. But had he only paid as much per yard for the first
as he did for the second, they would have cost $270. What
number of yards was there in each? )

Jns. 21 yards in the first, and 24 yards in second.

Ex. 12. There are two numbers whose sum is 40, and
the difference of whose squares is equal to 4 times the square
.of their difference. What are the numbers ? -
‘ , Ans. 25 and 15.

.Ex. 13: A and B éngaged to work for a certain number
of days. At the end of the time, A, who had been absent
4 days, received $18-75, while B, who had been absent 7
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days, received only $12. Now, had B been absent 4, and

A 7 days, each would have been entitled to the same sum.

For how many days were they engaged, and at what rate?

dns. '{'hey were engaged to work 19 days, and A
received $1-25 and B $1-00 per day.

Ex. 14. A and B have two rectangular tracts of land, their
Jengths being as 7 to 6, and difference between their areas
160 A., B’s being the greater. Now, had A’s been as broad
as B's, it would have been 672 rods long. But had B's
been as broad as A’s, it would have been 900 rods long:
How many acres were there in each ?

Ans. A’s 2100 acres, and B’s 2250 acres.

Ex. 15. A person has a cask of wine containing 256 gal-
Jons ; from which he draws a certain quantity, and then fills
the vessel with water. He again draws off the same quantity
as before, and so on for 4 times, filling the cask with water
after every draught, when there were only 81 gallons of
pure wine left. ow much wine did he draw each time?

Ans. 64, 48, 36 and 27 gallons.

Ex. 16. There are two numbers, whose difference multi-
plied by the less produces 42 ; but when multiplied by the
sum, the product is 133. What are the numbers?

Jns. 13 and 6,

Ex. 17. Required two numbers, such that the sum of their
cubes may be to the cube of their sum as 7 to 25, and e
sum of their squares multiplied by the greater may be equal
to 1053. © JAns. 9and 6.

Ex. 18. What two numbers are those whose difference
multiplied by the greater makes 60, but when multiplied by
the less makes 44? : JAns. 15 and 11.

Ex. 19. A person laid_out a certain sum of money upon
a speculation, upon which he found he had gained £69 the
first year. This he added to his stock, and at the end of
the next year he found he had gained as much per cent. as
in the year preceding. Proteeding in the same manner
for four years, he found that at the end of the time his
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stock was to the sum first invested as 243 to 48. 'What
was the sum laid out, and the gain per cent.?
JAns. Stock, £138; gain per cent., 50.

Ex. 20. The sum of three numbers in geometrical pro-
gression is 26, and the sum of their squares 364. What are
. the numberg? ) N JAns. 2,6, and 18.

Ex. 21. There are four numbers in geometrical progres-
sion, such that the sum of the extremes is 140, and the sum
of the means 60. What are the numbers?

-ﬂns 5, 15, '45, and 135.

Ex. 22. Required four numbers in geometncal progres-
gion, such that the difference of the extremes may be to the .
difference of the means as 19 to 6, and the sum of the means
may be 30. . .dm. 8,12, 18, and 7.

Ex. 28. The sum of two numbers fnultxplled by the sum
of ‘their squares, is equal to 13} times their product: and
the sum of the squares multiplied by the difference of their -
fourth powers, to 88§ times the square of the product. What |
are the numbers ? . JAns. 3and'1.

‘Ex. 24. The dlﬂ'erence of the extremes of four numbérq
in geometrical progréssion is 154, and the difference of the
means 5. What are the numbers? -

~JAns. 16, 20, 25, and 81¢.

SECTION w
.ﬂt!fectcd Quadratm

- 128. Adfected quadratics are such as contain the square
and first power of the unknown, with an. arbltrary quantlty
'Of this class are

5z’+3:c==10 7x’+6ﬂ-10:::,&c

In order to find the unknown quantities in sueh equations
we must 5o arrange the left ha.nd member that it may bn. a
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squase ; -then, extracting the root, the equation 1s reduced to
a simple equation, which may be solved by the rules already
laid down. o ‘ .

129. The square on the left member may be completed
in various ways; there are, however, three principal me-
thods, either of which will apply to any case that can pre-
sent itself, These rules are founded on the formulas

1. (4Bt 4 282+, or (24 30) b b2 1 B,

2. (2024 b) =4 a2+ 4 tbz+ 1, Lo
3. ( az+b)'=az® +Rabz+b%.

I then we have an expression similar to ax® + bz, it inay
be rendered & complete square by either of the following
methods, viz., r ‘

Ist. Divide by the coefficient of a8, and then add the
square of half the cogfficient of x in the quotient. 'This rule
evidently changes N ’

. . . b b' . b . .
<8° b, into 2t + T e (24 50

2d. Multiply by the coefficient of 29, and to the product
add the square of half the coefficient of x in the original
edpression. This evidently changes c

ax* 4 bz into @'zt + b +‘;— (m,- + g)..

8d. Multiply by 4 times the cogfficient of z* and add the
square of the original coefficient of x. This changes
az®+bz into 4a°z* + 4 abz + b= (2ax + b)*.

Either of these rules, as has béen remarked, will apply to
every case. The one which it will be most convenient to
employ will depend upon the coefficients of the different
terms. ’ - o .

) . . Exampres,
"Ex. 1. Given a8—6 2 =40. In this case we shall
use method 1; adding 3° =9 0 each member, the equation
becomes P—6r49=4149, .
Extracting the square root, z—38 = + 7,
whence T r=1or—4.
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Ex. 2. Given 82°—2 1z = 408, to find the value of 2.

Here, by méthod 2, wé have
9x3—6 2 <+ 1= 1225,
whence Szx—1=4185,. :
and - ®=J)20t —11%, . '

Ex. 8. Given - 5.1:’—2‘73:-{-70-86, to find the va-
lue of .
Transposing b — Wz = —34.

‘Whence, by method 8, we have : :
lOOz‘—540x+729==49,
L 02— =7
o 10z =34 or 20,
wi  z=3ag

'Ex. 4. Given az?—2 bz = c; to find the value.of 2.
Here, by method 2, we have .

a’a:’—2abx+b’=-ac+b’
whence : ax—b = 4 Vac + b,
a_nd ) a,z=b:|:\/ac+b’,
 Ex. 5. Given bx+ z+ﬁ, to ﬁntlihe

value of . .
Clearing of fractions and transposmg, we have

. « b —Blr=—12.

Completing the square, (Method 3)

and 100 29— 1220 z +- 8721 =B481,

whence - 10 # — 61 = 1 69, :
: : 1

amf'l R z =120 . .

“Bx. 8, Given b2%—27<99 4 38,10 find the values
of z. . . Ans. 6 or—2u

———
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Ex. 7. Given 5z——r~—%, to find the values
of z. JAns. 6or —1.

8z 7x—b .

Ex. 8. Gnven +2z+8 o—— ls-ﬁ,toﬁndthew
lues of z. . 9"16

1 4 54 33

Ex. 9. Given 8z z.+z.+6z=ﬁ,toﬁndthen-
lues of 2. - . .ﬂm 90:7—8
. 11

Ex. 10. Given 14+4z—:+7 8=z +9 +4x, ‘to
find the values of‘ap. dns. 9 and 98,

Ex. 11. Given 7 to find the values of 2.

+eo ~3z—5
_ 4ns. 14 and — 10.

. Ex. 12. Given \/:c'—;/ﬂ=8:c,toﬁndthemluesofx
dns. 4 or (—5)%.
Ex. 13, Given z+5—s/z+5-6, to find the values

of =.
Assume +/Z 45 =y, and we have-

. y"—y=6. ‘ 4
‘Whence -
Y= 8oar—2,

and . 240=y"=09o0r4,
“ z=4o0or—]1.
The last value, if substltutod in the eq\muon, g'lvea
4 — /4 =6,
whchutﬁrstmy appear incorrect. In this case, however,
Vitbmim—2
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the minus sign being given to it in accordance with the va-
lueof y. .

130. We not unfrequently have cases similar to the
above, in which one of the values requires to be taken with
some limitation, and sometimes there are new values intro-
duced in the course of the operation, which, though they
satisfy the ‘equation from which they are xmmedlately de-
rived, will not satisfy the original equation. It is therefore
necessary, ‘when the .solution has (i)een a~complex one, to
test the results by substxtutxon.

Ex. 14. Given a'+16—7 \/z+16=10—4 sf—_s,
to.find the values of z.
By transposition we have
z4 16— 3\/x+16—10.

If we consider vz + 16 as the unknown, we will have,
by oompletmg the square,

(= 4+ 16)—12\/z+16+9=49,
whence 2\/(:1: +16)—8 =417,
and z=9or—12.

Ex. 15. Given 2° + 6+ 29— 16 z = 16 z + 800, to find
the values of x. . Jns. 25, — 9.and 8+4 /29.

Ex. 16. Given 82°—22x+56v62°—4x + 1 = 62°
—4 z + b, to find the values of x.

.ﬂm. 4, T and 0.

Ex. 17. Given (z+e)z+2z!(z+e)=1as+z1' to
find the values of z.
Ans. 4’9md_-:8i:|_:§~_/:_6_7

Norz. In this example, consider = 4 6 the unlmown, and
complete the square without transposition.

Ex. 18. Given »— 229 + 7= 192, to find the values
of z.
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In this case if we endeavour to extract the square root,
we shall find said root to be z*—=z, with a remainder
—2* + 2. The original expression is therefore equivalent to

‘ (z‘—z)'—(z‘—z) = 132.
Completing the square
4(x*—z)p—4(r*—2)+ 1=0529,

whence 2(x*—x) —1==%23,

and . 28— 2=12 or — 11,
4::‘—4z+l=49_or—43,
and ‘ \ :t:==4,—80rl:'=‘/—'—4-3

Ex. 19, leen zt— 6 ma® 4 27 m*z = % m?, to find the
values of z.

3 (83:¢47) or 2 3" (8:!: J7).

Ex. 20. Given z’—2x‘} +2z—¢x=6, to ﬁnd the

values of z.
 dAns. 4, 1or -_;5*—2—_—1—1-

Ex. 21. Given Jz-8—= 7 ,toﬁndtheva.luesof z.

R
JAns. 16 or 1.

Ex. 22. Given Jl2— +Jz~‘——=z~',to find the
values of z. “dAns. *2o0rky/ — -8,

* Ex.23. Given z‘+-——z’—-39:t-81 to find the values

— 13V 1565 155

ofz. - Ans. =3 or 5

' . B4 T L JT
Ex. M'leel,‘x—,/:c-" +5:c+,\/ to find the

9
JAns. 9 or o

values of z.
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Here, if we multiply both members of the equation by

@+ z , we will have

T— Jx
4+ S 1‘+s/$
{z—¢w} *2 §¢_¢z§=5
2+

whence, ¢z-2° —§.‘

TClearing of fractions, we have -
2+ Ve=22—2vaoi—az 42,

3
whence V=3 0r —,

< . 9
o o =9, or o
23: + 7 Jac
Ex 25. leen _‘% 3— 32—\'3?’ to ﬁnd
the values of x. NN A Jns. 4 or 4::

Ex 26. leen Jz—— +Jl-——=x to find the va-

lues of z. o ‘ .. JAns. —-:E V6.
Ex. 27. Given '9’5 + x4 é’SO-—z‘_B to ﬁnd the va--
lues of z. Ans. 3 or'22.
Ex. 28. Given Jx’;—;n +,Ja’;— za, to' find the
vplueé ofz. = -+ BRI '.ﬂné.:!:aJI*;/o'
S 1, 2 -
Ex. 29..G1ven (23_4)'-§+ =2y to find the
values of . Ans: 3and 1.

Ex. 30. let;n 18+x 20x+9 65

§(3—n) W7z Ip— )"°ﬁnd
the values pf z -

1
JAns, 2 and 7m
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Ex. 81. Given 2-*—92z~* +m=0,toﬁndtheuluea
of z. Ans. :h—J5and:k

Ex. 32. Let t+¢z r—y2::8/x4+6:2 /2.
‘What are the values of z? - Jins. 9and 4.

Ex. 83. Letz'—7x+Vz‘ Tx+1 8=24 to find
the values of x.

Ans. z=9 or —2or 121
~ . 2 .
. ) - 2 )
Ex. 34. Given z*(z*—4)~" + —?;71 =85;: ,tofind

the values of x.

Ans. d:3and:|:lll~’429

Ex. 35. Given 2z 4 +42+16z=21zvVz +4
+ 84 vz + 4, to find the values of 2. ’
Ans.—4 12 or —3 or 4'&:5:2:%—5

Ex. 36. Gi'enJa - BN o LY find the
values ‘of :r. L1
_ dns. ﬂ:J(—z-d:—¢4q+ 1).
841 17 232
thenluesof:t» " e 1.

1 .
3—;-{- 5, to find

Ex. 88. Let ¢(T)+—f‘a==_ to find the
values of x. . Ans. :I: 5ETT
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Ex.89. Given .- B ) .
16—4Jz=88+33’.¢z+ 2'—bx +11
8—8yz 4+ 7 (8=3y2)(4+v2)

to find the values of . . :Jdns. 93 or 7.

Ex. 40. Given 21:*(:0‘ + a‘)} =2 .1:’(1: + 2a)f:a(x — a)',
to find the values of z. ’ a
J o ﬂM.Agor-—q.

181. The most general form in which a quadratic con-
taining two unknown quantities can-be presented, is one -
which contains the squares of the unkriowns, their producs,
and first powers, besides an absolute quantity. -Such an
equation is o

‘ab:’+bzy-+cy'+da~:+,ey‘-f-'f=0. o

-132. If between two such equations we eliminate one of
the unknowns, the resulting equation will be of the fourth
degree. 'We cannot, therefore, in' general, solve equations
of this nature. There are, however, many cases in which
such reductions or combinations may be made as, shall re-
dyce the result to a quadratic form. The methods of per-
forming this must depend on the ingenuity of the student.
K, however, he has-thoroughly mastered the preceding sec-
tion, and that on pure equations, he will find comparatively
little difficulty. - He will also see, in the examples which
follow, most of the more important artifices employed. . He
should study the examples that are solved, carefully, until
he has made these artifices his.own : his own ingenuity must
then do much of the rest for hin.. S

In all cases where one of the equations is of the first
degree, the equatjon resulting from the elimination eannot
exceed the secon'& degree. Such équations are, therefore,
readily solved. g o ) }

. . ExawrirEs. ‘
Ex L Give“ﬁ i; 3;'{ = ;g % to find the walues of z and y.
Here, from the first equation y = 18 —3 &,
whence 1 = 324 — 108z 4 9=*
. 14
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Substituting this ir the second equation,
we have z44-648-—216 z 4 18 2* = 43,

whence 19 22— 216 x = — 605,
*. completing the square 361 z*— 4104z 4 llﬁuum
and . 192—108 =+ 13,
‘whence ° 192 =98 ot 121,
121
lnd ) 3:-50 -IT.
Ex. 2. Given - 22 +y==10) to find the values

ﬂz‘—zy-f-ay‘-n& d'a:udy.
From the first equation y = 1022,
whence ' ¥'=100—10z + o
Substituting this in the second equation, it becomes
21‘—10:+2z’+8(l)—lmz+l21‘=54.
Whence 16 z* — 130 z = — 2486,
*. completing the square
256 2 — 2080 z 4 4225 = 289,
andextmetmgt.heroot 16z — 65 =117,

whence : - 16z =82o0r48,
o - x =%l or3,. )
and ‘ g Yy=10—-2z=—jord
and ;_'_'._=loﬁ,toﬁndthe yalues of z and g.
_ Multiplying the two equations, we have

a4y = 156%,
whence - ad + xty® = 152 28,
but ‘ ~ xty? =3375,
.~ by subtraction 2% = 162 2°—3375
and Co % — 1562 2* = — 8375,
eonsequéntly a8 ="27 or 125,

and- - - 2. =8 orb,
. -y‘6_ or 3. (
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Ex 4. Let z4+y.=10 }t@ﬁndthevaiuesqfxandy«

and oyt = 2482
Put  z=a+z and.y=a——z,
then 'z y=2a=10. :
_ Also (Art. aa,)z-aa’+4a'z+6aazﬂ+4w+zs
and y*=a*—40a2 4 6 *z~4 az® 4 2,

- Ty =2at 4 120004 2 20 = 282,
and by transposition, &c., 2*+6a2= l241—a‘, ,
or substituting the value of @ .

24 4 150 23 = 616.
. Completing the square and extracting the roo}
_ 24716 =119,
whenee . 2=V 154 0r =2

and T=a+z=bkt/—154 or7org,
: Yy=a—2z=56x3v—15d or3or7,

Second Solution. From the 1st wé have

(w+y)‘=z‘+4z'y+6z'y-+4zy'+y'_1oooo
 ty=us

*. by subtraction 4 z‘y +6x%yr 4y =T518.
Multiply the square of the first equation by 4 zy, and we

have 4 2% + 8 2% + 4 2y* = 400 zy.
Bubtracting. this from the precedi:ig,_ and transposing,
and .. 2% —400 zy = —7518,
whence Py 200 2y == 8759,

o ‘ 2y =17 or 21.
But from the Ist 2* 4+ 2y =10¢, »
. 2910 £ = —179 or — 21,

and  Z=6+ w164, 0r7o0r8,
’ ,y=5=FV—l5$,01'39;7

Ex. 5. Given . =
dei ive z'+xz ;}toﬁndthevaluesofz‘+y°,

4y, 24+ g, &
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Squaringthe} 3"+2Zy+y’=8‘9

first, we have
but - . Ry =2p.
.. by subtraction *+y =82 “(A)
Multiply this b A
the 1st and y} vty taytyt=s—2p,
but the produet of ’
the 1st and 2d is % . Pyt = o

*. by subtraction 2 +y  =r—3p. (B)
M Itiply by thy
first, ok 0} z‘+r’y+zy'+y‘=a‘—3 »,

Multlply the equation : "
(A) by the 2nd and § ytay = =2 _

*. by subtraction ety =—45942 p’ ©)
M ltipl b ;
the B0 25T ot oy oyt byt 4 2,

ultiply (B) b L : }
ge gel::Zn ,z)m({ } zytryt = "P'Ta’# ’

.. by subtracting z5+ y° =38*—54#p+53p°.(D)
The general formula is ' A

z“+y"=a"—m“"p+h 1= 38"-‘p‘~—n ”-;4
n—>5 ._ —b6 ' n—6 n—7 .
‘=3 a ’p’+n 5§ ° : ’pd._.

Ex. 6 Given 2 +y=a
| Pty= b, to find the values ofx and y.

Put  zy=p.
Then (B) Ex. 4. .z"+y' ==a'—3ap, .
: nd » : =a’—-b
* =g
a‘—b
oo ) zy-
Butfromtheﬁrst a:'+:cy ax,
. ad—b
by subtraction &' =az———,

andby tmnsposltnon P—ar=— "%:a_{"
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‘ Con\pletmgthecv:lnare4«:‘-—-4(1:«:+a‘=--4b__l'_'I
and - . o 2a:—a=:i;¢( b—a' R
| R 4b-—a'
o . 2=—--:i:g J )
46-——0‘
wd o yme— ”"'s:‘:a*’ T

Ex7,leona y=2a
o B—yP=1Ds toﬁndthevaluesofzandy

Put taz-#—anndy—zq—a, .
then 25 = 2546 az*-+10 ¢°284-10 Q’z’sl-5 a‘z-.l-qﬁ,
and " Yt == 3°—56 az*+10 ¢°2*—10 a*2°4-6 a*z—a®,
. 2*—yt = 10 az* 40 a'z‘+2 at= b

Transposing and comipleting the square, we have

z'+2a'z-+a‘=”—lio%‘-f
remss(EE)
and Iy {-aﬂ:ﬁ:J(b i';)i }
Comequenay a:-=a:l:\/§-e-¢' (B8 }'ﬁ“’)} .
and y=—siby {-—a':l:J(b +8“’)§

Second Soluuon Dmde the second equatlon by thq gm,
and we have

d+¢'y+¢'y’+ay'.+y‘=ﬂ. :
But (z—y)* =z'—42%+6 'y —42y*+y =16,
.. by subtraction . & z‘y-—'ﬁ z'y’+5:cy’ T ba_;:f «

Multiply the square of the first by 5 zy, and we have
6@—”:‘%1;533{‘;20&:3,,
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by subtraction sty =222 _ovay,
5z=y'+zoa'zy='%2_‘.'f,
' b —32a°,
or . x’y’+4a‘zy———ma . |
‘Completing the square zﬁ/’+4£zy+4m;v:6ia‘,
b5 4-8
o zy+2a’=-:l:¢(———i'8a -
consequently ’ my=—2a'd:¢( 10 'r‘)
but from the 1st 2* — Zyi=2 az,
z-—zaz=_2a-=t¢(b'+8
and ) m=ad:¢§—a’d:¢ b +8a5)}
' b8
and »y-=--a:|:\/§—-,a':t‘/ ;'(-)a )}

Ex. 8. Given 2* +"’y 70} to find the values of x
: ry—y?
and-y.

Assume z = vy, then a:‘=v‘y’and:cy=nvy
Consequently we have from the

first equation v’y’ +vypr=170,
and from the second vy*—3y* =12 ‘ (A)
Dividing theﬁrst by the second,

we have viv 3% '
v—1_ 6 -

. -6v*+6v =85v—35.

Consequently 6 v"—29 v =—35,

and v= —% or -g

Substxtutmg the first value in (A), it becomes
FY—y=1%

|
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or 7y —8y* =36,
whence C y=43,
and . : z=vy=:!:7
If the second value of v is substituted in (A), 1t becomes
. §3f—yff¥2’
whence o 8y =2,
.-~ : z=-vy=:t5¢2

These equations might be solved by ﬁndm the’ va]ue of
z in the last equation, and subsmntmg in the gm Thus,

From the second = z = 22 .|.. A

z’+zy=-7+24+y’+l2+y'=70

Clearing of fractions and transposmg
2y —384y = — 2144,

whence ] y=:[:301;};2\_/2,'
=I:E70l‘:!:5\/2
Ex 9. Letx+y+,/(a:+y)= 12 to'find the values
of 2 and y.
Put . a:+y=:,
dxenfromtheﬁrst . s /8=12,°
whence 4a+4¢8+l_49,
nnd Vs=38or—4,

r4y=s=9or 16,
consequentlya.‘+8z’y+3zy'+y'=729 or 4096.

But 2 +yt= 189,

By subtraction " 82% 4 3 zy® = 540 or 3907.
But 8z‘y+3zy'=3zy(x+y)=-27zyor48$y,
consequently - 27 yx = 540,

or 48 zy = 3907,

md © zy;%gr%-&l‘]—i%

4
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Bat . ' z-l-ya:ﬂorlﬁ,
1 836 .. -
W™
and ‘ 3-4«6«8:1:—1 —?

Ex. 10. leenz+zy+ty’+zy‘=15 (

2+t Y+ Y go§lo fad o,

nlnesofzandy

Multll the ons Xes| vel by 1—y, and -

cﬁey;nbgeoomeequm Pef"-l ¥ by y
& — 2yt = 18 (1 ),
*. by dividing the second by. the ﬁrst,we have

oy =3 1+9

Dmdmg this into the first equqnon, we have
1+y+y'+y_ 45
I+y I+y) .
Clearing of fractions and transposing, this becomes
28y‘—84y'—34y‘-84y+28g=0. (A)
Assume y.+l—"’ya .
then 28y‘+66y’+28=%m‘y',
. by eddition
28y'—34y=+563-_34y+28=28m-y'—34my-j
Subtract the equation (A) from this,

whence z=bord;or8:=t

and 90 y* =28 my* — 34 my’,
or ; l4m‘—l7m=45,
whence . m=2—o¢ 7—,’
consequeww .v'+1-= .'101—7.%
: 1 —9:1:\’ H
and yp2or20r 1
(2BxEV—11 )7'

w'w'y'}l"lwe 0316163V —118
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Equatxon A) in the .above solution belongs to a class of
equations which will be treated of more fully hereafter.
A(See Recurring Equations.) It is sufficient to remark
here, that such eqnauons, which are characterized by the
coefficients recurring in regular order, may dlways be re-
duced by a substltutlon. hke the above, or by its equivalent,

'Ex. 11. Given zy“+:c=99
and zy‘+wy.+wy,+z‘y=90 toﬁndthe
valuesof 2 and y. .
Here, if we dmde the second - equatlon by the first, we
have .
PPty
Ty 41 ll’
. : +y 10
ducing _——yﬂ———
T Yy ry—yF

‘Whence, clearing of fractions and transposmg, ‘
10yt —21 32+ 10 y* —2ly+ 10=0. (A)

Assume Y4 l=my
and . 10420y +10=10m%,
also Ry =—2my,

*. by addition' l()y‘-—2l y’ + 20 2 — 21 y + 10 =10m%*
—2l my*.

Subtract (A) from this,

and 10 3 =10 m*y* — 2 mys, o
whence - 10 m8 — 21 m=10, =

% . . m == 2—9 .

but P+ 1lamy=" y,

consequently = y=2or —;,

. and ' r= =38 or 96.

99
y+1
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The other value of m leads to imaginary results, and is
therefore omitted.

Ex. 12. Given 3*‘/34"'/ ya—z—y 2_}

—VEty Jw+z+y=
toﬁndthenlueaofzandy '

Considering = as a known quantity in the noond equa-
tion, we have, by completing the nqmm,

P =vEF + 5=
whence y- ;-\/:é-:tz—s/m
y= 1\/101' - l vz
If in the first equation we. make the first frection equal to

2, we have

. . z+‘;‘=4'T)'
whence 40 2*—80 7 = — 40,
and - N z=§o!-g-,‘

+s/z+ ty 8 8.5 6
z~¢z+y 6 8';

Substituting in this the first value of y, viz., ;; vz, we
have

Consequently

eigve ¢z+3 5 s
Py
z4+avE ¢z+—‘- §F

whence vz =3 or o !z,.
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- wive X
oo . y=40—‘:)—8

‘anlm'ly from the second value of y, viz, — 3 J :c,
_ obtaine& the values, )

Ja:—%tor—‘l,j

9

and E » y=——'%40r;;-._

wherice ) | “xalgorlﬁ,‘

| Ex-19. Given z+y=a
Ty =p

«-———

% to find the values of zand y.
- vAns, a = 4Pa.ndy ’:F‘/———-—fg'—

Ex. l4~ ‘va:en z,_’;-", = ;g} tofind the valuesof zand y.

RS, z =5 or—3,
y=301‘—5

Ex 15 Gwen z‘y’+:cy=1260
m+y=- 121 ‘to find the Va.luesof
umdy

ns. x="7 or 5or6;1=6¢2,
y=50r7or6=F6\/2.

Ex 1. GlVeh 45— 2acy-=I2
2y°+8a:y }toﬁndtheva.luesof

x and y. )
: - Jins. :c==:|:2or=!; ¢7,
8
o .'!—, 10r=;=;~/7
Ex. 17, Given ' z 4 §= 10
_ 1,+}/__870§toﬂnd the values of 2
and y. Ans, x=Tor3,y=38or 7,
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Ex. 18. Given m+y+\/-’v+.'/" 12 coﬁndtheva-‘
:c'+y'
lues of = and y.

1‘ 835

Ans. zf50r4.or8:l:4—~— 3

yé40r50r.83=z~—T.

Ex. 19. Given zf.,'_"y"{:ma?r}“ find the valpes of z
and y.

dns. a:x--4or30r7:!:82

y=38or4or7F3V 11

———

Ex. 20. Given /'y 4+ vVZ: Wy —v/2:: /2 +2:1
€ y
gan_, PVl

vy
to find the values of 2 and y .
16

ﬂm a:=lor—l,y 4or .
9 . .

Ex. 2L Givenx+y+z—25 T
Ty = G}to find the values of a,
) yz =60
y,a‘ndz

Ans. :p:_2or—,1/._.30r22,andz_200r?0

Ex. 22. Given 2%y 4 2% = 252

o= 2187} to find the vah}es (ff

zand y.
~ dns. 3—=tQOrd:9J—l or\/i——or;i:J——\/&

1 e ‘ o
y-::l:-gor:bgs/—lor:|:27\/§-or.:|:27; —§¢3.
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Ex. 23. Given g::«g " lg :yy} to find the values of
a:p.ndy . Cdns. =2 y=6. .
Ex. 24. Given z*y+1“.l/ “52;; ;
A 20 to find the values of _
A a,a;hx+y=l— S
z and y. L .- 8 7 o1
= an ‘ T=—or—_, y=3
. s, 4 4

1
.'t=——:|: \/3 ‘1/.—g

Note.—In the followmg examples’ but one result is
given ; the student, however, should always obtain all the
answers,

Ex. 25. Given %i%;ﬁfoo } to find the va-
luesofa:andy . dns. x=5, y=2.

Ex. 26. Given 9+ — 249740).
xy{/'_z+y y= 5516 to find the

values of 2 and y. : Ans. z =500, y = 16.
Ex. 27. Given 9; +36% = 85
32y 61 102 o [ t0find the
-+ zH16) -
values of z and y. " .ﬂns T = 3;, y=2
Ex. 28. Given ;:s :259 = gz to find the values of
zand y. . .ﬂm z2=5 y=2
Ex_’ 2. Given f%,i 1"3;" =120 to ﬁnd the values
of  and y. ‘ ﬂna.mzﬁy =3,
Ex. 30. Given z 1;3{_'_2“"/ = 34} to find the values
of x and y. Ang. 2 =6, y=4.

15
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Ex. 81. Given (z—y) (2*—y
iz_’_zg gz,_'_y,g_m} to find the
values of z and y. ) dns. x =11, y=1.

Ex. 32.G1venz+y+‘/a'a y_%+y)
zy—vVar—yp 8y
and (#*+y) +z—y =2z (z*+y)+506
to find the values of z and y. Ans. x =5,y =38.

133. Que.m'om producing Quadratic Equations.

The following questions, though given under Quadratic
Equations, may many of them be solved.by simple, or b
pure equations. The student should endeavour to wor
them out in as many different ways as possible ; it being far
more important to acquire the command of analysis which
such exercise will give him, thanmerely to solve any given
number of examples. .

ExAMPLES.

Ex. 1. A merchant sold a quantity of cloth for $39, gam-
ing thereby as much per cent. as the cloth cost him. What
was the cost of the cloth ? :

Let" x = the price of the cloth,
then x = the gain per cent.

...m.x=r«—),=\thegmnonxdoﬂars.

AConsequently. o z;+z =39, -

and 29 4+ 1002 = 39(X)
Whence we readily obtain
© & =30 or — 130.

The last value being excluded by the nature of the prob-
lem, the price was 30 dollars.,

Ex. 2. A bought linen and muslin for $10.50, the whole
number of yards being 50: and each cost as many cents
per yard as there were yards of «the other. How- much of
each did he purchase ? 2
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Let . & = the number of yards of linen,
then 50 — = the number of muslin, :
also 50 2 — 2% = the cost of the linen in cents,
and 50 x — g = the cost of the muslin,
oo 100 2 —2 29 = 1050,
and 2*— 60 x = — 525.
& = 85 or 16 the number of yards of lmen, !
and 50—  ==.15 or 35 the. number of muslin.

Ex. 3. The plate of a looklng-glass is 38 inches by 27,
and is framed with a frame of equal width all round it, the
area_of the frame being half that of the glass What is the

* width of the frame ?

Let 2 = the-width of the frame in inches. Then thé
length of the glass to the outside of the frame is ’

» 36 + 2 «,
and its breadth 227 + 2.

. (8642x) (7 +2x) =972+ 126 x4 42’ =the wholearea,
and 36 x 27 = 972 =the area of the glass.
Consequently 4 2* 4 126 x = 486 = area of the frame,

‘and 424 63 = + V5913 = + 77 very nearly.
Hence 4 x = 14 or — 140, -
and & =84the breadth required, the negative

result evidently not answering the conditions of the problem.

Ex. 4. A-and B hired a pasture, in which A put 4
horses, and B as many as cost him $4.50 per week. B
afterwards put in 2 more horses, and found he must' pay $5
per week. At what rate was the pasture hired ?

Let & == the number B put in at first,
then 4—:9 = the cost per head in cents,
and 4x4;59=¥=thesumApmd

1800

oo — 4 450 = the price of the pasture.
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In the second case the number of horses is  + 8.
o 246242 !%-0-]-450:500
:.1800 + 450 x : 500 z,
consequently, (Art. 43,) :
500 x* 4 3000 x = 450 z* 4 2700 z 4 3600.
Transposing 50 z* 4 300 = = 3600,

whence . 46 =172
and r=06or — 12,
KN o ) '-1%0+450=750.

Hence $7.50 was the.price of the pasture per week.

Ex. 5. There are four numbers in arithmetical progres-
sion, the product of the extremes being 22, and that of
the means 40. What are the numbers ?

Let x—3y, :c—li/,h;'c+y, and 4 3y represent the

numbers, then we will have
-9y =22
g =40,

Whence x and y are readily found to be 64 and 14. The
numbers are consequently: 2, 5, 8, and 11. '

Ex. 6. A starts from Philadelphia, towards Pittsburg,
travelling uniformly at the rate of 30 miles per day. Afier
he had been gone 2} days, B starts in pursuit, travelling
15 miles the first day, 20 the second, and so on in arithme-
tical progression. - In what time will he overtake A ?.

Let @ = the number of days required,
then z +~g- == the number A tmveﬂgd, »
Also 3024756 = the whole number of miles A travelled,
and, (Art. 89,) 3 (30 + (z — 1)5) = 222

2
distance B travelled.

5 2Bz o
o~ -=2—+-.§—-3Oz+75,

6 x*
+—?z—. = the
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or tra.nsphsing, &c., 97 x =380,
whence : ‘=10 or — 8.

The fifst of these answers the conditions requlred as for

* the other, it would indicate that B overtook A 3 days before

they set out, which is manifestly absurd. Had the question
been stated as below, both results would hdve applied.

A and' B are travelling the same road. A, proceeding
uniformly 30 miles a day, arrives at Philadelphia 23 days
before B. The number. of miles B travels each day forms
an increasing arithmetical progression, the common differ-
ence being 5, and the number of miles B travels the day he
leaves Phlladelphla being 15. . How many days from the
_time B 'was at Philadelphia were they together ?

This question will give the same equation as the former,
and the results, 10 and — 3, mdlcate that they would be
together at two points on their route, viz., 3 days before and
10 days after B left Philadelphia. :

Ex. 7. It is required to find four numbers in propottlon,
such that.their sum may he 20, the sum of their squares
130, and the sum of thexr cubes 980.

Let w, z, y, and z represent the numbers. Then we

have
w +z +y +z2=20
w42ty + 22 =130
. w'+z'+y°+=°=980
Assume ‘z4y=sand zy =p. -

Then ,w+z_20—aa.ndwz=p. (Art.45)
Also (Ex. 5, page 169,)
P4+yYP=8-—2p . '
w’+z’=(20—a)’—2p=400 40s+a'—2p,
cowt 4 20 4 Y4 29 =400 — 408+2a'—4p=130..(A)
Agam,(Epr 159,) 2® + 2= 32— 3 ap,
. w4 2= (20— s5)*—38 (20-——3)11,
=8000 — 1200 s + 60 5* — :’—60p+83p,
..w‘+z‘+y‘+z’=8000—l2008+608'—60p= X

From (A) 6000 —600 s-+30 s*—60p=1950,
.- . 2000—600s+308 = — 970,
and 8 — ms = —99, .

15* -
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consequently . s=11o0r9,
whence (A) p=18, ’
or .t+y=llor9andry=18
and z=9o0r6,
y=2or8.
also : w+z—20—c==90rll,
wz = 18,
o w=6or9,
and " z=8o0r2

Hence the numbers are 6, 9, 2, and 3.

Ex. 8. The sum of five numbers in geometrical progres-
sion is 31, and the sum of their squares 341, to detetmrne the
numbers.

Let —, T Y, z, be the numbers,
Y Yy

8 28 .
Then — 4 24 —=381.
e g +y+ +y »

and §+¢'+y'+z'+§\=84l,
-also TZ =Yy
put . TA-2=8, .
then 4 2=35 -2y, (Ex 5, p.1569,)
at 28 8
d T+l =22y,
= y iy Ty T
, T —y+e=81, ,
or 8ly—s4y'—sy =0 . . (a)

But, from the first equation £+ z_5= 81 —s—y,

y‘+2zz+§=961--62s-—62y+a'+2:y+y',
md_+§,-961—62a-62y+a'+20y ¥
but z‘+y'+z’ © 8N —
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by addition,
?+z“+y‘+z’+y—’s=961 628—62y+23’+2sy —2r=311
To this equation add twice (A) =~ . .
and - ) 961 —62 3 = 341,
whence ‘ . 623=62,
and : o " 8=10.
Substituting this value i in (A,) we bave by reduction,
whence ' y= 4 or —

The latter value will lead to imaginary results.
‘We have alao . x4+ z =10,
‘and’ : rz=1y=16, -
whence . 2=, and 2=8;
o x—’fl,andgulﬂ,‘

and the numbers aré 1,2, 4, 8 and 16. _. -

The above solution is from Simpson’s Algebra, and is re-
markable for the beauty of some of the reductions. The
following, on the principle-of recumng equal:lona, though not
shorter, -1s more direct. .

Let .2, 2y, zy*, xy* and zy* represent the numbers,

then . xtay 4+ 2y + xy - 2yt =381,

and . r°+x'y’+z§y‘+m@°+w 341,
divide the second by the first,

and | - z—ay 4Ty — wy'+wy =11,

add this to the first,

and 2z+2:¢y’+2xy‘.—;42,

also by subtraction =~ ' Rxy 4 2y* =20,

o~ 20y + 20y + 0 =Ry*+ 23
and by transposition 20 y*—42 y°+-20 y*—42 y +20=6, .
or - 10 y*—21 y°4 10 y*—R1 y+ ¥0==0(A).
Put T Y4 1=my,

then  — . 10y +20y° + 10 = 10me.

Sub’t (A) from this, and 21 y® 4-10 y* 4- 21y = 10 m%?,
but . 248 -+ 21'y =B my3,

.. by subtraction 10y* = 10 m%* — 21 my?,
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or 10m*—21 m =10,

h - Eor 2

whence m = or —gy
5

consequently . ¥Y+l= 3%

and ’ “ y=26r1

This, snbsntuted in the first equation, will give -
x =1 or 16,

whence the numbers are 1, 2, 4, 8 and 16. o
" The second va.lue of m will lead to imaginary results.

Ex. 9. It is required to divide a line of 15 yards in length,
so that the rectangle of the whole and less part may be

equal to the square of the greater.

JAns. Thepartsare—-l—5+ +/b.an dl1_5’1_53.~/;5.

Ex. 10. Bought some cloth fer 024, for which I paid $2.
more peryard than there were yards inlength. . How many-
yards were there? : - vns. 4.

Ex. 11. There are two ‘numbers~whose product isto8
times their sum as 3 is to 6, and the difference of whose
squares is 80. What are the numbers? © JAns. 12 and 8.

Ex. 12. Divide 100 into two such parts, that if each be
dmded by the other, the sum of the quotxents may be 2—
JAns. The pa;rts are 36 and 65

Ex. 13. The length of a room exceeds its breadth by 8
feet, and the number of yards required to cover it with matting,
four feet wide, exceeds ¢ the number of feet in the breadth,
by 20. Reqmred the'dimensions of the. room.

‘Jns. 28 feet by 20

Ex 14. A gentleman has a rectangular yard, 100 feet by
30, andvushestomnkeagmvel ofequnlmdxhhalf
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round it. What must be its breadth in order that it may
occupy } of the ground ? Ans. 11-8975 feet.

Ex. 15. The product of two numbers is 156, and their .
sum added to the sum of their squares is 338 ; what are the
numbers ? ) _ Jns. 12and 13.

Ex. 16. The fore wheel of a carriage makes 6 revolutions -
more than the hind wheel in going 120 yards; but if. the
periphery of each wheel be increased one yard, it will make
only 4 revolutions more than the hind wheel in the same
distance. Required the circumference of each.

o .« ns. 4 yards and 5 yards. ~

Ex. 17. A certain number consisting of three digits in

metrical progression, is to'the sum of its digits as 124 to
ge:oand if 594 be added to it, the digits will be inverted.
Required the number. : . JAns. 248,

Ex. 18. A sets out from Philadelphia to travel east, at
the rate of 20 miles per day. B starts west at the same
‘ time, and travels 1 mile the first day, 4 the second, and
s0 on in arithmetical progression. In how many days will
they meet, and how far will each have goune, supposing the

1iallel ;:f latitude through Philadelphia to be 18921 miles
in length ? SO . -

JAns. 106 days. A’sdistance =2120 m.; B’s =16801 m.

Ex. 19. A sets out from New York towards Washington,
- and travels 1 mile the first hour, 2 the second, 8 the third,
and so on. B starts 5 hours after, and travels uniformly 12
miles per hour. In what time will they be together?

- ’ JAns. 3 or 10 hours.

Ex. 20. A and B engage to reap a field for $18-00; and
as A could reéap it in 9 days, they promise te complete it in 8
days. Finding, however, they were unable to finish it,
they called in C ‘to assist them vhe last ® days, in conse-
quence of which B received 75 cents less than he otherwise
would have done. In what time could B or C alene have

reaped the field ? - . :
: " Jins. Bin 15 days, and C ind8 days,

.
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Ex. 21. A man bought two cubical stacks of hay for $123,
each of which cost ; as many dollars per solid yard as there
were yards in the side of the other. Now, as the greater
stood on 9 square yards more than the other, what was the
cost of each ? ' Ans. 875 and $48.

Ex. 22. There are three numbers in geometrical pro-
gression whose sum is 7, and the sum of whose squares is
21. What are the numbers ? Ans. 1, 2 and 4.

Ex. 23. The sum of two numbers multiplied by the -
greater is 104, and the sum of their squares 89. What are

the numbers ? JAns. 8 and 5 or l?? J2 and %ﬂ

Ex. 24. There are three numbers in harmonical propor-
tion whose sum is 191; and the -produet of the extremes
4032. What are the numbers ? JAns. 56, 63, and 72.

Ex. 25. What two numbers are there whose atini, pro-
duct, and difference of their squares are equal ?

3 1 1,1

Ex. 26. There are two numbers, the sum of the squares
of which is 58, and the cube of -their sum is to"the sum of
their cubes as 100 to 87. What are the numbers ?

: i JAns. 7 and 8.

Ex. 27. A starts upon a journey, travelling 7 miles the
first day, and increasing his day’s journey in arithmetical
Erogression so that at the end of a certain number of days

e has travelled 282 miles. Now, had he gone but 3 miles
the first day, and increased his day’s journey by a number
of miles one greater than in the former case, Ke would have
g:ne 800 mili; in the same time. Required the number of

ys occupied by the journey. Ans. 12 days.

Ex. 28. Required to divide a line of 134 yards in length
into three such parts that the sum of their squares may be
6036, and that. the first, twice the second, and three times
the third may together make 278. I

: ) Jns. The parts are 40, 44, and 50.
. ° N
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Ex. 29. There are four numbers in arithmetical progres-
sion, such that the product of the extremes is 3250, a.nd of
the means 3300 What are the numbers? .

-Ans. 50, 65, 60, and 65.

Ex 80. The sum of six riumbers in arithmetical progres-
sion is 33, and the sum of squares 109. What are the
numbers ? ~ JAns. 3,4,5,6,7, and 8.

‘Ex. 31. Bacchus caught Silenus- asleep by the side -of a
full cask, and seized the opportunity of drinking, which he
continued for two-thirds of the time Silenus woiild have
_required to empty the whole cask. After that, Silenus awoke

(b drank what Bacchus had left,’ Had they drunk both
together it would have been emptied two hours sooner, and
Bacchus would have drunk only half what he left Silenus.
Required the time in which each would have emptied the
cask separately. J/ns. Bacchus in 6 hours, and Silenus i in 3.

Ex. 32. There are three numbers in arithmetical pro-

ession, such that the square of the first, added to the pro-

uct of the other two, is 16,-and ‘the square of the second,
added to the product of the other two, is 14. What are
the numbers ? - - J4ns. 1,3, and 6.

‘Ex. 33. A man being asked how many years he had
been empléyed where he then was, replied that the first
year he had occupied the post he had reteived $500, and
that his salary had been increased $75 every year. Not-
wnhstandmggls expenses each year had absorbed the inte-
rest on his former earnings, and half his salary, he had laid
by $3500. How many.years had he been employed ?

Ans. 16 years.

‘Ex. 84. The arithmetic mean ‘between two numbers ex-
ceeds the harmonic mean by 25, and the geometric by 13.
What are the numbers ? - JAns. 104 and 234.

Ex, 35. The sum of two numbers is 8, and.the sum of
thelr fifth powers is 3368 What are the numbers ? -
Ans. 8 and 5.

Ex 36. What number is that, whieh being increased by
12 and the sum divided by i the product of the digits,
the quotient may beequal to 2§ times the differemce of “the
digits ; and if 27 be added to tbe number, its digits will be
inverted? .= . - JAns. 58,
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Ex. 87. If the values of gold and silver are as 13 to 1,
what is.the proportion of the two metals in each’ of two mix-
tures, such that the value of an ounce of the first may be to
that of an ounce of the second as 11 to 17; but if the quan-
tity of gold in each mixture be doubled, then the value of
one ounce of the first would be to that of one ounce of the
second as 7 to 11?

JAns. The proportion of gold to silver in the first
mixture 18 1 to 9, and 1n the second 1 to 4.

‘Ex. 88. The sum of four numbers i arithmetical pro-
gression is 20, and the'surn of their reciprocals g ‘What
are the numbers? . =~ - Ans. 2, 4,6,and 8.

Ex. 89. There are five whole numbers, the first three of
which are in geometrical progression, and the last three .in
arithmetical progression, the common difference being the
second number, Thé sum of the last four is 40, and the
geroduct of the second and fifth is 64. " Required the num-

rs. ’ Ans. 2, 4,8, 12, and 16.

Ex. 40. There are four numbers in arithmetical progres-
sion, which being increased by 2, 4, 8, and 15, respectively,
the results will be in geometrical progression. Required
the numbers, Ans. 6, 8, 10, and 12,

Ex. 41. Theré are three numbers, the difference of whose
differences is 3; their sum is 21; and the sum of the
squares of the greatest and least is 137.. Required the
numbers. ) - JAns. 4, 6, and 11.

Ex. 42. The sum of 'four numbers in geometrical pro-
gression is 30, and the sum of their squares 340. What
are the numbers ? Ans. 2,4,8,and 16. .

Ex. 43. The sum of five numbers- m gedmetrical pro-
gression is 242, and the sum of their squares 29524. Re-
quired the numbers. " JAns. 2,6, 18, b4, and 162.

" Ex. 44. The sum of the first and last of six numbers in

geometrical progression is 488, and the sum of -the four
means is 240. ~What are the numbers? = - :
: ) JAns. 2, 6, 18, 54, 162, and 486.
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-~

CHAPTER VILI
ON THE PROPERTIES. AND SOLUTION -OF EQUATIONS.

_ SECTION L
" . Onthe chdammtal}’ropcma ququatwm

134. Any value of the unknown quantxty that satisfies
the conditions expressed by the equation is called a root of
that equationn. We have already seen that quadratic equa-
tions have two roots; we shall hereafter show . that every
e?uatlon has a8 many roots as there are umts m the number

its degree.

~ 185. If a'be a root of the equatxon,
#+A2"'4+Br—%4....Pr+R=0,

then will the left member of thls equatlon be divisible b

(x —a). For if said division'leave a remainder s, we ill

have (Q representing the quotient)

A z"+A:a"“ +&c,==(x—a)Q+a=0
Bu't~ . r—a=0. 8=-0, )

Cor The converse of this proposition is evidently tme.
For if £ — a be a factor of the equation, .
L V=4 Azr—'....Pz4+R=0,
the quotient being Q, we have -
V= (z—a)Q=0, '
which may be satlsﬁed by makmg z—a= 0 that is
rT=a. .

. 136 Every equatxon has as many roots as there are
units in the index of the highest power of the unknown
quantity. .

Liet @ be a root of the equatlon ‘ _
) 4+ Az-'....Pz+R=0. (A)
‘Then by the last article thls expressxon is equal to '
(z—a) (=~ + Aiag--!. . .+Nz+P)=0,



182 FUNDAMENTAL PROPERTIES OF EQUATIONS.

Now this equation may be satisfied either by making
z—a=0,o0tz""! +‘A,a.“‘". ..« Nz2+P, =0,
the former of which gives z = a.
Ifbbearootofthesecondeqmon,thmmaybewntten
(z=0)(x»*+Az"~"....Ny)=0.
Pursuing this investigation, the ongmal equation will be

decom into the factors z — a, @ —b, &c. So that we
will have .

.2+ A 4 Bt Pz+R-(z-—a)(x—b)

(r—¢)e...(z—p)=0.

Bat this last equation is satisfied by mhng
z=a,bc ..orp. - .

Consequently these are roots of the equation (A).

This demonstration assumes that every equation’ has at
least one root.

Cor. 1. It must not be understood that these yoots are ne-
cessarily all different. In fact any number of them, as a, b,
¢, may be equal. In such cases these are still considered
separate roots. If two of the roots are equal to a, the equa-
tion will evidently be divisible by (x—a)*. M there be
three roots.equal to a by (= a); and so on for any
number.

 Cor. . Since the eqnatnon .
a4 Azn-t. Pz'-l-R-:Omequwalentto
=)o —B) (=) ... (2 =p) =0,
we must have, (Art. 81,)
A == the sum of the roots with their signs changed.
B = the sum of the products taken'two ant two.
C = the;sum of the products taken three and three.

.
.

P« ... (a=Dad@np-1).
R = the product of the roots.
The signs being understood as being changed in every case.

187. No equation has. more roots than there are units in
the index of the highest power of the unkrown quantity.
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LetV=z'+Am'—‘....Pa:+R=0
be an equation whose roots are @, b; ¢ . . . . p, we will have
Vn(z«-a)(z—b)(z—c) (z—p)—O

Now, if possible, let a’ be a root dlﬁ'ermg from either of
these, then,we will have, by substituting thxs value” m the
above, - -

Vﬁ(a’—a)(a'—-b)(a—c) (4 —p)=0.

But this equation is impossible, since none of the factors of V'
is equal to 0. .

138. If an e%etlon has mtegral coefficients, that of the
highest power being unity, the - ‘roots cannot be rational
fractions.

’ Let, if. possnble z= b' aand b. bemg prime to each other,
bea root of the equauon,
V=2a"+Az~'4 Bz"~? &c.,=0. A, B, &c., being
integéis : then we will havé, substituting ; forz,
an—-l

b,,+AZ, 4B goite. . R=0
Multxplymg both members by b"' the equatlon becomes
—+Aa" +Ba""b+ . Rpn-t =0

Now the ﬁrst term, 5 is a fraction, whxle the rema‘ining
terms dre mtegral consequently the function cannot equal 0,
and, therefore, b is not a reot.

Cor It follows from the above, that the roots of an integral
equation, of which the first coefficient is unity, are either
integers, surds, or imaginary quantltlee

" Note.~We shall, in what follows, conslder the first co-
efficient unity, and the othets integral. The prepositions
will in this way lose none of their genérality, as we shall .
find hereafter that any equation, whosé' coefficients are frac-
tional, may be transformed into another of the kind required.’
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139. If the signs of the alternate terms of an equation be
changed, the signs of all the roots will be changed.

Let a be a root of the equation - ..
4 Az-'4+Br-*....Pz4+R=0. {1)
Then will — @ be a root of the equation
#—Az*~'4+Bzr-*.... LPzFR=0. (?)
oo—z"+Azxr~'—Bz"~'.... FPr L+ R=0. (38)
These last equations are evidently identical. 7
If now we substitute @ in equation (1), and — a in (2)
and (8), the results will be )
. @ 4+Ad'+Ba-'.... +Pa+R,in (1)
and either a* + Aa*—'+Ba"~*.... + Pa+R,
or —a"—Aa~'—Ba*~*.... —Pa—R, in each
of the others. But these expressions being identical with
the first, are each equal to zero,and therefore — a is a root
of the equations (2) and (3).

140. Surds u;d imaginary roots enter an _équation by
pairs. So that if @ 4+ /b be one root, a — /b will be an-
other. ) '

For, if (a + +/b) be substituted for z in the equation,

Vemgr4- Az~ 4+ Bz"?....Pr4+R =0,

it will become : -

V=(a+b)"+A(a+/b)"" '+ .. &c. = 0. (A)
If, now, we expand the powers of the binomial in this equa-
tion, it will evidently consist of two parts, one ratjonal, and
one composed of surds. .* So that we will have ‘

V=S4+Uyb=0. ‘ (B)

Now, this cannot be equal to zero, unless we have separately

: : 8=0,and U /b =0, B
and consequently 8+~ Uy/b=0. L

If we examine the structure of equation (A), we will
readily perceive that the irrational part, U /b, of equa-
tion (B) arises from the odd powers of /b in the develop-
ments of the binomials, and must therefore change its si
with /b, this being, moreover; all the change that will
produced by substituting — /& for 4 /b. Lo

A

/
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“The substitution of a — /b for z in the equation
. Ve 0,
will therefore give :
8—~UT Y, -

which we have shown to be equal to zero.
Consequently ¢ — /b is a yoot.© -

The same demonstration will apply to the case of ima-
ginary roots. Theae are of the form =~

c:!:bJ—l.

141 From what has beon said in last article, it is obvnoul
that if @ 4 b4/—1, be one imaginary root, a —b /—1
' ‘must be another. The equation will therefore be divisible

byz —a—b./—1,and also by z—a+b§/—- 1. Con-
sequently, their ptoduct ‘

o — 24z + & + b,

must be a uadmtnc divisor of the equatlon, and tlus factor
is necessari nve, whatever value we give to z, for it is-
evidently cquag to (z — a)* + b* the sum of two. squares.

Cor. 1. The roots of an equmon of an even degree may
be all impossible ; but-if they are not all unpnsalble, two at
least must be real

Cor. 2. Since the quadranc factors eonuumng the corres-

ponding pairs of impossible roots are essentially positive, it
is cleart at when the roots are impossible, the product
of the quadratic factors is essentially positive, and therefore
the absolute number R must be positive. (Art. 136, Cor. 2.)

Cor. 3. Every’ equimon of an odd degree has at least one
rational root of a contrary sign to that of the last term ; and
every equation of an even degree, the last term of whlch is
negative, has at least two real roots, with contmry signs.

~ 142. An equnuon cannot have a greater number of post-
tive roots than there are variations of signs, in successive
terms, nor can it have a greater number of negative roots
than there are continuations of the same ugn from one term
to the next. - ]

16*
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Let 4+ 4+ — 4+ — 4 4 4 be the order of signs in any
equation. If, then, we introduce a new positive root a, we
must multiply the equation by z — a==0. The signs in
the operation will be as follows :

++—+—-—+++
—_—— e ———

in which it is apparent that each permanency is changed
into an ambiguity by the introduction of the new root, so that
the number of continuations of the same sign cannot be in-
creased by the introduction of a positive root, and the num-
ber of signs being increased by unity, there must be at least
one more variation. Hence the introduction of a positive
root inereases the number of variations, by one at least.
Now, since in the binomial equation # — a = 0 we have one
variation and one positive root, it follows from what has been
said above,-that the number of positive roots can never ex-
ceed the number of variations of sign.

If we change the signs of the alternate terms in the
above, the continuations will become variations, and the
variations, permanencies. But, by this change of sign, the
signs of all the roots are changed.” (Art. 139.)  Hence, since
this equation cannot have a greater number of positive roots
thanel(}iere are variations of signs ; it follows that the original
equation eannot have a greater number of negative roots
than there are continuations of sign. ’ ’

Cor. 1. If all the roots are real, the number of positive
roots will be.égqual to the number of variations, and that of
negative roots equal to the number of permanencies. of sign.

Cor. 2. This rule, ;vhich is due to' Descartes, will some-
times enable us to determine whether thére are impossible
roots in an equation. For example, suppose it were desira-
ble to knowé&xe nature of the roots of the cubic equation,

2+ Ar+N=0. '
Supplying the second term so as to make the equation com-
plete, it becomes : ' T
#3028+ Az +N=0.

Now, if we take the upper sign, there are three perma-
nencies, and, consequently, there dre no positive roots.
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. But, if we take the lower sign, there are two-variations, and
therefore can, be but one negative root. The other two
must then be imaginary. ‘

| et——

. _ SECTION L
N  Transformation of Equatjons.

143. To transform an equation into another whose roots
shall be ezual to those of the original equation increased or
ed by a given number, ‘ '

Letz" 4 Az"=' 4 Bz"~* 4 Czn=%... Pa:+'R=0g)
be an:equation.” If in this we substitute y —r for , the
resulting equation will evidently have its roots equal to those
of the equation increased by r. But as this operation is ver
tedious, especially for equations of ‘a high degree, we sha
point out the following shorter method of arriving at the
same result. , ) )

By the substitution above proposed we will arrive at an
equation : S

Y+ Ay 4Byt Cy2.. . Py + R’ =0. )]

If in this we put (z -+ r) instead of y, it becomes
(x+r)+A+0)"'+.....Plz+r)+ R =0. (3)
Now, this equationn must be identical with (1), since (2) was
obtained by substituting y — r for z in (1), and (8) by sub-
stituting z + r for y in (2), which is nothing more than re-
versing the operation. .

Since, then, (3) and (1) are identical, if each be divided
by (z 4 r); the quotients and remainders must be the same.
But (8) divided by (¥ + r) gives for quotient (z+r)*—! -
+A’'(z 4 r)y"—*.\ .. P, and-for remainder R’. If this

uotient be again divided by z 4 r, the remainder will be
%’. This operation may be continued, dividing each quo-
tient by & + r, and the several rémainders will be the coeffi-
cients of the various terms, beginning with the last. -

Thus let.it be required to find an equation whose, roots
shall exceed by 4 the roots of the equation o

B2 4 1228+ T2 —13=0,
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dividing by z + 4, the operation will be as below.
z44)r— B2 4 1220 4 Tz — 12 (a*—02* + 482 — 188

TN

o Ll
941220
! —92*—3862*
84+ T2
} 82410
—18z— 12
—~ 1852z —T7T40 -
z+4+4)2*— 92 4482 — 185 (x*— 13z 4 100
»442 ’
T—132° 4+ 48z
—~ 1828 -522
100 z — 185
100 = 4 400
: —585,mdrem.
¢+4)u' 183+100(z-l7 c+4)z—-l7(l
*44zx +
T 17z + 100 | ., T=%L,4threm.
—~17z— 68 ] -
168, 8d rem.

Hence the transformed equation is
a8 — 21 2% 4 1682° — 585 & + 728 = 0,

- By using synthetic division, this opemtxon will be much
ehonened Thus: .

1 —6+ 2 47 — 18
_q —44 36102 4740

1st quotient, —9 448 - 185, 4 728, lstrem
- —4 452—400
2 quotient ll—l$4+100.-585,2dmmunder

4 quotient, 117, 168, 54 romainder.

—

1,— 21, 4th remainder.
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And the equation is as above, ,
v — 31 2° 4 168 28 — 585z+728 0

The operation"may be' still better arranged thus, placing

the — 4 to the right, in the place occupied in ordinary divi-

sion by the quotient, and omitting all the numbers in the
left hand column except the first. Thus

1 —5 12 K —12 (—4
—4 36 —192 © 740
—9 - 48 . =18 728 1st rem.
—4 - B2 —400 S
—13 1000 —585, 2d remainder.

—_4 8 ~ '

:TZ 16_8, 8d remainder.

—2i, 4th xemamder

" To transform the equatlon 8 xr—4 :c'+7z‘ +82x—12=0
into another whose.roots shall be less by 8 than those of the
glven equatlon.‘

'3 4 7T 8 —12 (3
o 156. 6 =2
B .29 71 ‘210, 18t rem.
g a2 - 1®
14 ,64 266, 2d remainder.
9- L
23- 133, 3d remainder.
9 : :
32, 4th remainder.

and the equation is
48222+ 133z’+206 z‘+210=0

. Exawprzs. -
Ex. 1. Diminish the roots of the equation
42 —82x*—x+8=0
by 4.8.
The operatlon wﬂl stand thus, .
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4 —32 -1 + 8. ( 48
16 — 64 — 260 :
—16 —68 — 252
16 0o .
| <5 -
| L
1 16 T—66 | — 2R
j _8_3 . 1536 — $9.712
: 19.2 —49.64 — 201.712
‘8.2 -17.92.
R4 — 31
3.2 Co
25.6
Hence the transformed equation is
42°426.62%—81.72x — 291.712 =0, .
o0 24 64z'— T98z— T2W=0.
Ex. 2. Transform the equation \ o

#—1024+ 22— 18=0
into one ‘whose roots shall be less by 8 than those of the
given equation. . Jns. *—3*— 62 =0.

Ex. 8. Diminish the roots of .
#—82+ M+ 4280

by 6. JAns.
Ex. 4. Increase the roots of i
;. B+624Tr+20=0
by 7.8. C . dns.

. Ex. 5. Diminish the roats of :
2¢*4+82"—42x—10=0
by 7. ‘ - Jdna. .
Ex. 6. Diminish the roots of
Ct—82*4+ 1604 T2—12=0 : ’ :
by 2. . dns. —8z 4+ Tz +18=0,
144. The solution of the last example of the preceding

article makes known the method of transforming an equation
80 as to eliminate the second term.
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It is only necessary in the equation
a4 Az~ 4 &, =0 .
to increase or diminish the roots by %, according as the co-

efficient of the second term is positive or negative. -

Deprive the following equations of their second terms.
Ex.l. 2 —62°+82—9=0. " : -
. | dm.v :

Ex. % w4+ 109 —4294+82— 1120,
- : Ana. -

 Ex8 o'— 9254962 —34=0,
‘ ‘ -~ Jns.

Ex. 4. 2 4+82°— 62 —17=0.
Ans.
Ex. 8. b:' 5::'+8:c—-12=0
14 7

ﬂm. z‘—'§~t—16 =40.

145 'l‘he removal of the second term of a quadratxc equa-
tion leads at once to the general ﬁmnula for its solution,
be any quadmnc equmon

If we transform it so that the roots may become z' +7,
the result will be

z”+(A+8_r)z'+v"+Ar+B=0,

-

and that the second term may vamish, we must have
. A+2r=0, orr=—%,k .
whence> r’+Ar+B=-——-A’+B,
the equanon therefore becomes
~ B z"—ZA.'F‘B’o)
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whence z == J‘% As—

B,
A ,'—1 . o
and z-.'c’+r-—--2—:i: ZA B,

which are the values resulting from the ordinary mode of
solution.

146. To transform an equation into another, whose roots
shall be the reciprocals of those of the given equation.

This is done by subantuung 1 for z in the given equation

and clearing of fractions, The result will evidently have
the same coefficients in an inverted order.
Thus, if Az" 4+ B2"-'4+Cz"*... P4+ Qz4+R=0
be an equation, the reciprocal equation ‘will be
Rz" 4- Q2! +Pz“—'. .Cz»4+Bxr 4 A =0.

Cor. Hence we may tranafbnn an equation into another,
whose roots shall be greater or less than the reciprocals of
the given equation, by applying the process pointed out in
Art. 143, to the coefficients taken in a revetse order.

For example, let it be required to transform the equation

82— 182+ 72*—82—9=0

into one, whose reots shall be equal to the teclpmeals of
those of the ngen equation, increased by 2.

-9 8 7 =18 3(_2
Co 8 -2 26 —2%"
i06 —T13 1B -2

18 —56 . 138 '
B —69 ‘161 -

18 —92
% -—Tel :
18 :
64

and the transfofmed equation is
‘ —9.1:‘+64:c'—1613:’+15lx—23 0.

. 147. If the coeﬁc:ents of the proposed equa,tnon be the
same when taken in an inverted order, it is evident that the
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equatlon, whose toots are the reciprocals. of the foots of the

ven equation, will be identical with 'it, and will therefore
urnish the same series of roots. The roots of the original
equatxon must therefore be of the form

a,l;b,;, c,l &.

If the ‘equation be of an odd degree, and the coeﬁiclents
taken in reverse ordet be of like magnitudes as when taken
- in direet order, but with signs all different, then will the
roots of the transformed also be identical with those of the.
original equation, for by changmg all the signs &f the original,
which of course produces no change in the roots, the signs
of the corresponding terms will be the same, and the equa-
tions will therefore be identical.

The same reasoning will hold with equations’ of an even
degree, prov1ded the middle term be absent.

Such equations are called recurnng equations.

148. A recurring equation of an odd de ee has one. of
its roots equal to. 4 1, or — 1, according as t e signs of the
like coefficients are different or alike. '

For, since every power of 4-1 is positive;, if the signs of the
like coefficients be different, the substitution of. 41 for z will
render the-corresponding-terms equal, and of contrary signs,
they will therefore destroy each other;, but if the signs of
the equal coefficients be the same, then, since one of them
will belong to an even power, and the other to an odd one,
the substitution of — 1 for = will make the correspondmg
terms equal and of opposxte signs. ,

149._ A recurring equation of an even degree, in’ whlch
the like coeﬂiclents have different signs, and whose middle
term is wanting, is divisible by 29— 1, and has of course
two roots, viz., 4+ 1 and — 1.

For, let z""+Az"‘"+B:L"‘"’ .. —Br—Az=1—0
be a recurring equauon of the kmd required. It may be
- written . .

@#r— 14 Ax (:c"’—’—- 1) + Ba? (z**—¢4—1) +,&c =0,
the first member of which is evidently divisible by -1,
1t is moreover evident that the depressed equation will be
a recurring one of the (2 n - 2)th degree :*
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For the resulting equation is

z‘"’-l-Az""+Blz"“‘-l—A 2., +A BI::H—A::-H—G

which is a recurring equation of an even degree, the equal
coefficients having like signs.

160. To transform an eqluanon into another whose roets

are some multiple or submultiple of the given equation..
Let z°4Az*~'+Ba"~*. .. . Pr4+Q=0be an eqnatlon

Put yumzor:ta‘:%,mdwehave

YAl sl P-” +a=o,

clearing of fractions, and :
Yy +Amy '+ Bmyr-t. .. .Pm“"y+Q.m"=0
" is the required equation.

This equation is evidently formed by multrplymg the
second coefficient by m,.the 3d by m?, &c.

Cor. 1.If an equation have fractional coefficients it may be
changed into one with integral coefficients, by transforming
it so that the roots shall be equal to those of the. pro
equation, multiplied by the Teast common multlple of the de
nommators

Cor 2. If the successive coefficients of an equauon be

divisible by m, m*, &c., then m is a common measure of the

m.

———

‘SECTION ML
On the Limits of the Roots of Equations.

15%. In the numerical solution of equations it is often of
importance to determine the limits between which the real
roots must be found. The limits o< and 0, are evidently the
axtreme limits, between which all positive roots must lie ;
and Oand — o are equally limits to the negative roots. But
in order to obtain the numerical valne of the roots it is evi-
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dent we must dmoover much vartower limits than these.
The principal means of obtammg these will Be found in the
following part of this sectipn. .

A superior limit, to the positive roots is a number nume-
rically greater than the greatest positive root; and an inferior
limit of the negative roots is one numenca.lly greater, ab-
straction being made of its sign, than the greatest negative
root.

A superior limit is characterized by the property, that
it or any number- greater than it, when substituted for z
in the equation, causes the result to be positive;; and an infe-
rior limit necessarily produces a negative result, as likewise
do all greater negative numbers, provided the equation is of
an odd degree. :

162. In’ any equation whose second term is negative, and
all the other terms positive, the coefficient of the second
term, taken positively, is a superior limit to the roots.

" Let the equation be - .
x*— A:c""‘+Bz“"+ «as+Nr4+R=0.
Now it is evxdent, that substlmhng A for x renders the
first two terms equal the equatlon will therefore be re-

duced to
BA®~* 4+ CA-*.... +NA + R.

The result of the substitution is therefore positive, unless

Aj is a root of the equation .
- BArt4CARR, .~..+NA+R=0,

which is impossible, because it has no changes of signs, and
consequently no positive root. (be . 142.)

If any number greater than A substltuted for z, the first
two terms, 2 — Az"—', givea posmve result, and hence the
whole resuk is also posmVe. A is therefore a superior limit.

153. The il:n atest negatlve coeﬁcxent mcreased by unity
isa supenot

— D be the greatest negative coefficient of the equa-
non

2+ A= B+ &.... +Nz+Rm0. (1)
Then D +- 1 is a.superior limit. .
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Comparing the equation with the folowing, viz.,
2*—Dz*-!'—Dz*-*....—Dz—D=0, (2

it is evident that any number which is a superior hmit to
this will likewise be to the other.
- Now the latter may be written

—D@E 2% ...2+1)=0,
or r-’D{"‘IE 0.. (An.63)

If, now, D + 1, be substituted for x m the first me.mber
of this equation, it becomes °

D41
(D+1y—D {L-*;D’—-} —(D41)y— (D+1)"+1==L
a positive quantity.
But if s, “Freater quantity than D+1, be substlmted

for z, the res
r—D{"_ 1}>1,

for ‘ £ —1l={(r—1)
Therefore,masmuchasa>D+lora—-l>D

rer—1_ "1

D i=1

« 1>Dg =

a-—l

SN

D is therefore a superior limit to the equatxon (2), and there-
foreto (1) likewise.

and

154. Inany equatlon of the nth degree, if — Gz =% be
the first negative tem, and — P the greatest negative coeffi-

cient, then will P: + 1 be a superior limit.
Conceive G and all the subsequent coefficients to be nega-
tive and equal to — P, which is evidently the most unfavour-
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i T T 1 » . I
able case. Then, if we substitute P¢ for 2 in the inequality

_@DPE e L 1), S
xtbecomes . . S

Pi>PIP T 4P i ). @
Now, thé last member of this inequahty is equal to

PR PYL L 4P

which, being greater than P7, renders ®) impossible.
The second: member of the mequahty (1) is equal (Art

63) to - et 1
P{ Tz—1 }

whxch beoomes, by the substitution of Pi +1 for 2
(P:+l)"“'+'—-l§
Pi .
=P i(r*+ )i ’%
=P :(P‘+l)"*N-'--P ‘
IR T
v CPr4l

* which is evidently less than (P; +1)" and therefore Pr +1
substituted for z satisfies the mequahty (9), and as it'is plain

that any number gteater than Pc + 1 will likewise satxsfy
(D), Pi +1lisa supenor limit.

Mrmm

Ex. 1. Required a superior limit to the roots of the equa-
tion,

xt— 5.7:'-}-372:’ 3m+39=0
Here P=5,g=l,~

& .. PP Y'me 6, the limit required.
S 1
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Ex 2 24Tt — 122 — 49.z'+52x—13==0.
Here P=49and g =2,
X Pt 4 1 =7 41 =8, the limit required.

Ex. 8. o* 4 1[ 2*— 25:1:—67=0 :
JAns. 'I'helmutls67 +l=6.'

Ex. 4. 823 —22°—11 z+4-0.
Divide by 3, and
2 . 11

r—gr—_¢+3=o

and the limit reqnir’ed = + 1=>5.

166. To determme the inferior limits to the negative:
roots, it is only necessary to ‘change the signs of the alter-
nate coeﬂiclents, by which the signs of the roots will all be
changed (Art. 189); inferior limits to the hegative roots
thus ieoome superior limits to the positive roots, and may
be determined as above.

166. If a, b, ¢, &c., be tbe real roots of an equauon ar-
ranged in the order of thelr magnitude, sothat a>b, 5> ¢, &c
and if a series of numbers a,, b,, c,, &c., be taken, such that |
a>a,a>bi,b >b, b>c,,c > ¢, &c. ; then, if a, b, ¢,,
.y be substituted for x in the equation, the first result w1fl
be posmve, and the others alternately negative and- posmve
- The original equation is eqmvalent to

. (@—a)(z=b (T=e) ..o =0.
‘This, by the substitution of a, for x, becomes
* (a,— a)(a,— ) (a,— ),
the factors. of which are all positive, and hence their product

must be positive. . :
If b, be-substituted, it betomes ..

(6,—a) (b, —b) (b, —c),
the ﬁrst factor being mnegative, and all the Test positive, the
result is therefore negative. -

The substitation of ¢, for z renders two of the factors posi-
tive, and of course the product is positive, a.nd 50 on.
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- Cor. 1. Henoe, if we find two numbers, which, when
substituted for the unknown quantity, give results of differ-
ent signs, we may be certain that there is an odd number of
roots contained between them.

Cor 2. By the substitution of the natur&l series 0, 1, 2,
~3 &ec., taken negatively as well as positively, we will gene-
rally be enabled to. discover the real roots. Sometimes, how-
ever, there are-two or four or .some even number of roots
'contarned between two consecutive terms of the ‘natural
series; in such cases their existence will not be indicated
by this substitution. If, for ‘instance, one. of the roots was
+/3sand another 2, these both being- contained between
1 and 2, the substitution of these latter numbers would afford
no mdlcauon of them. - .

Cor. 8. If the équation be of an even degree, the substi-
tution of a quantity less than the least root will produce a
positive result ; but if the degree be odd, the result will be
negative: .

157. To ﬁnd an equation, whos'e roots are mtermedmte
between the roots of the equauon,

V=2z"4Az~'4+Bz"*'+....Ne'+ Pz 4+ Q=0.
The roots of such an equation-.being limits te those of the
proposed, it is-called the limiting equation,

In the equation V=0, make 2 = y+ ry and we shall have

=y g -f;n —-—r‘y”‘“+ m'"—'y+r"
Az—im Ayl (n—D)Ary—+..(n—1)Ar—y 4 Ar
By = - Byt 4. (n—2)Br‘"‘y+Br""
Pr = o Py +Br
Q. = ;
-V =yFA y""‘ T B’y"“z +. P'y+0-'=0’(1) ‘

in whlch A’, B, &c., are.put for the sum of the coefficients
. of the dlﬂérent powers of ¥ ; so that

P=nr"-'+(n—l)Ar"-‘+(n—2)Br""+ +P
If,now,a,b,c,d &e., be the roots of V=0, a.rmnged
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in the order of their raagnitudes, the roots of equation 1 will
oa—r,d—r,c—rde—yr &
Consequently (Art. 186, Cor. 2;)

Pum (r—0)(r—c)(r—d)to (n—1)factors
(r—a)(r—c)(r—~d)to -
Hlr—0) (=D (r—d) .o
+(r-—¢)(r—b)(r—-c)«.... »‘.‘

+ &. - ‘

If, now, we make rw=a, b, ¢, &;c sacoessively in the
above, we shall bave the following resuh.s, vis.,

P=(@g—b)(a—c)(a—d).... =+ ++.+= -
P'—(b—a)(b—'c)(b'—d)....=-— o =—
P=(c—a)(c—=b)(c—d)....=—.—. 4=+
P’-(d—a)(d‘-—b)(d—c)....q-—-.—-.—-=—

And since the substitution of a, b, ¢, &c.,for r, give 'results
altemntely positive and negative, the roots of P’s= 0 must
be contained between a, b, ¢, &c. (Cot 1. Ar. 156.)
Consequently, (writing z for ) -

P'=nz*+(n— 1)Az™* 4 (n—2) Ba™*....2Nz+P=0
is the limiting equation required. .

168. If the equation V = 0, have equal roots; these must
also be roots oﬂe equation P’'= 0, and hence the two equa-
tions must hdve a common measure,

Thus if a, b, ¢, &c. betherootsofP'==0, and a=2>o,
we shall also have a=d, and the factor 2 —a will be
found in both equations. .

If a==b = ¢, we shall also have a-:a’-:b’ and (:c—a)’
will be the tommon measure. _

To determine the equal roots of an uat.ion, then, It is
only necessary to form the limiting equatlon and find the
common measure of the two polynomials.. This common
measure must be formed by factors containing the equal
roots. If, for instance, there are four roots equal to @ and
three equal to b; the common measure will be -

oo
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. ExamprLEs.
Ex. 1. Determine the equal roots of the equation
325~ 102+ 15z+8=—0
The hmmng equation is
15 o* — 80 x4 15.
The common. measure of these (Art. 35) is
- 2+2x+1=(z+ 1)

Hence there are three roots equal to — 1.

Ex: 2: Find the roots of the equation |
N ¥ —1423+ 61 23— 84 24 86 =0.
The limiting equation is |
4z — 421:’+122z—84==0, :
and their.common measure is . .
‘ B —Tz4+6=(x—86).{x—1) .
Hence the rocts are 6, 6, 1, and 1.

Ex. 8. The equation
. z’—1m9+16z—-12=0 :
has equal roots. -What are they? - ﬁm. 2, 2.

Ex. 4. What are the equal roots of the équation
s — l3z‘+671"— 171 2°+ 216z — 108 =0?
, T . dAns. 3,3,3,a0d 2, 2. -

.Ex. 5. What are the roots of the equation .
828 82t — 24a:‘+48w’+29x‘-12a:+180-0!

JAns. 8, 8 -2, —2,and :!:3\/—14

Ex 6. Solve the equatlon ‘
‘z’—2x‘+6x‘—8x'+l2z’—8x+8=0
which has equal roots.
Ans. z-—d:J—EZ, :t¢—2, andl:l:s/-d_f

.

Ex. 7. The equation
x5 — Bt 4 26 2* — 38:c’+28&‘—8==0

has equal roots. - What are they ? .
* m.2,2,2,l,andl.
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SECTION IV.
Inaginary and Real Roots.

169. The determination of the number of imaginary
roots in an equation has been considéred a problem of great
difficulty ; and though many methods of solution haye beea
discovered, yet as most of them fail in some cases, the prob-
lem could not be considered as entirély solved. By the
following beautiful theorem of M. Sturm this difficulty has
been completely overcome.

Lt Ye=a4Azr-'+....NzfP=0
be an equation of the nth degree, having no equal roots,
and Y, == 0, the [imiting equation. : i

If there are any equal roots in the proposed equation,
these must first be determined by {Axt. 188,) and the equa-
tion depressed. ' . -

Operate with these as though their commen measure
were desired, calling the several remainders with their signs
changed, Y,, Y,, &c., Y,.. » . :

" The primitive function Y, and the derived functions Y,,
Y,s..Y,, will be of decreasing dimensions in z, the final
one Y,, being independent of that quantity. "

Now to determine the number of real roots between
limits p and q, we have only to substitute these values for
x in the primitive and derived functions, noting the num-
ber of variations of sign in the results. The difference
in the number of variations resulting from the two sub--
stitutions will be the number of real roots between Those
Bimits. If 4+ o gnd — o be used instead of p and g, we
will have the whole number of real roots. - .

DEMONSTRATION.

1st. No two consecutive functions can vanish for the same
value of z. o )

For from the mode in which the functions are derived,
we have Y = Y -Y,
Y, =Q, Y, —=Y,
Ys =Q, Ya Bared Yq

.

Voosm Queilums =V .
: A
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Now if any two, as Y and Y, eacﬁ =0, we will hava
Y., =0Y,=0,Y,=0, and Y and Y,will have a com-
mon measure, but this is impossible, as Lﬁexﬁe are no_equal
roots. . ) . L

‘2(1. If one of the functions' as Y, becomes 0, for a pai'ti-
“cular value of z,the adjacent functions will have contrary
signs for that value. - - -

Forwe have Y,=Q, Y,~7Y,
Butas -~ Y,=0, .Y,»#—.Y .

3d. Let p be greater than the greatest, and ¢ less than the
least root (negative roots being considered less than corres-
ponding positive ones) of the equations =~ . =
_ Y=0,Y,=0,Y,=0,...Y,_,=0.

" If; now, we suppose ‘g gradually ta increase until it be-.
comes equal'to the least root of the above equations, no
change can have taken place in the signs of any of the re-
sults. At this point, however, that, function to which this
root belongs, (say Y,,) vanishes; and as, in ‘this case, the
adjacent functions necessarily have different signs, no change
in the number of variaticas. of signs can.be produced by this
circumstance, and, consequeéntly, every change in the num-
ber of variations must arise from the change of sign in the
_primitive function. - ) :

Let us suppose the value of ¢ has changed until it has
passed the least root of Y =0, but not arrived at that of
Y, =0, this being necessarily greater than the least of
Y =0, (Art. 157.) Now Y and Y, produce results of op-
posite signs if any number, less than their least root be sub-
stituted in them, (Cor. 3, Art. 156.) Hence the change of
sign that takes place in Y, by passing the least root of Y=0,
must make them of the same sigh, and diminish the number -
of variations by unity. : -

If we conceive ¢ still to intrease until it has passed the
least root of Y, =0, this funetion will have changed its
sign, and of course: Y dnd Y, will have different signs. As
g still increases, it will pass the second root of Y= 0, by
which operation the number of variations will. be again
diminished by unity. . , '

Now as ng change in the humber of variations.can arise
from the vanishing of any of the derived functions, and as
the number of variations is diminished by unity, whenever
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g increasing passes one of the roots of Y==0; it follows that
the whole number of real roots will be equal to the diminu-
tion in the number of variations, that is' produced by ¢ in-
creasing from its original value to an equality with p.

The calculation will .be simplified by using + o, and
—cx, for f and ¢, since it will only be necessary to note the
sign of the first term of each function, as in the first case
the signs of the results will be the same as those of the first
terms; and in the latter the even powers will be the same
and the odd powers different from the signs of those terms
in the functions. .

As an example, let it be required to find the number of
real roots in the equation :
P—q ' —6x+8=0.
Here we have ' ’

Y= z*—42%* —62 48
Y,=3x*—8z —6
829821 6)3z°— 122°_ 182424 (z
3z

—82* —6x
—4* —122424
xbyf —3z*—9z 418(—1
. —3af +8z 46
Y,=17z—12, . —172412) 3z*—8B» —G(é
‘ 512*— 136z —102(—3x
5lx*—36x | .
—100z —102.
* The final remainder will evidently be negative. Hence
Y,= +.

The substitation of 4 o, and —  in these. will produce
the following results :
+. o gives + + + +
) — o gives — 4+ — +.
Now as there are no variations in the first line, and three
in the sgconq, the roots are all real.

To determine the initial figures of these roots, we will
merely have to substitute the numbers 0, 1, 2, and — 1,
— 2, &c., in the functions, and note the signs of the results.
Thus, S
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,1::=0'g1ves+——+l2 variat.|z=0 gives+——+|2 variat.

[ ___++ __l “ ++ +2 [
2 “ __++1 _2 @ +3 “
"8l ¢ ——f
4| « —+++‘
B« +++-+0

Hence the roots are between 0 and 1, 4 and 5, and — 1,
and — 2. The initial figures are therefore 0, 4 and — 1.
Again, let the number and situation of the roots in
' z-'+llz~°—102z+181— )
The functions are
: Y=z +lla:’—102a:+181
Y,=3z +22z —102 -
Y= 1222 — 308
Y=+ - :
The substitution of o gives all the-signs positive.
: of — oc’gives three variations. .
Hence there are three real roots.
x.=0 gives 4 —— + twa variations,
r=1 % 4—=dF
r=2 + ——+ .
=8 ¢ J4——44 two variations.
cx=4 “ 4+ + 4 4 no variations.’
As there are two rools between 8 and 4, we will trans-

~-fox-m the functions so that their roots shall be dnmmshed by
38, (Art. 143.) The result will be

Y =2a%- +20z‘—9w+l
Y,=32 +40m-—-9
Y_.l22:c—27 . ¢ .
Y +. . A -

Pl

In these
z= 0 gives +«———+ two vanatmns .
z =.,1 + —_——t . .
' =.2 4 4 — e 4 two variations.
2=.3 % 4 4 + + no variations.
We thus find that- these roots are both contamed between
8.2, and 3.3. . 18
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Transforming these functions so that the roots may be lesa
by .2 than those last used, they will become A

© Y=z +20.62°—.882z+.008
Y, =82 +412z —.88
 Y,=1222—2.6
Y.=+. :
In these . -
z= 0 gives +-——+twovanatlon|.‘ )
z=.01 -« t——Ftwo « ’
. x=.;02 ¥ +———4 one .
z2=.03 '“ 44+ 4+ +mn0

So that the roots are 3.21, and 3.22; and as the sum of the
roots is — 11, the third is —174.

8. Find the number of real roots in the equation’
2'—228 4 624 —827 412282 + 8 =0,

The functions are
Y=2'—22°4624—82°+ 122°—8z 48
Y, =6z"—102 + 242 — 24 29 + 24 2 —8
Y, =—132* 424 2°—60 2+ 48 x—68
Yy=2°+42422+4+8 -~

. ——2 ,
Y 0.

Since 2% 42 is the common measure, there are ,equal
roots. Now 29+ 2= (z +v—=2) . (z—+/—2) Con-
seqjuently there are two palrs of equal roots, equal respect-
ively to /—2 and — /—2.

& = c gives the signs of the various functions.
' + +—+— three variations.
T = — o gives 4+ ———— ‘one vanauon

The above would indicate two real roots, whereas all the
roofs are imaginary. This failure results -from the theorem
being applied to a case to which it does not belong. The
demonstration was based upon the supposition, that there
were no equal roots, and upon this supposition one of the
important steps was founded.. In the above equation, how-
ever, there are two pair of equal roots, and of course the
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demonstration does not apply. The immediate reason of
the failure in this instance may be found by substituting
—4 for z, which renders Y, =0, Y, and g‘, both being
negatxve

Determine the number and situation’ of the real roots in
each of the following equations :

1. z¢—112® +2R29—712x—85=0.
2 2—132'—30x—25=0. - ~
8. z*—B2t48294172—382=0.
-4 3x 4172 —=1122—2RQz—13=0.
6. x?—Ta%49xz—11=0.

160.- Let it be required to determine the condmons that
all the roots of -

S tpr4g=0. -
maybereal. . . o
Here - Y=22+pr+q . _
Y,=—2pr—3¢q
=—4p =2 ¢

Now in order that the roots may- ‘bé all real, there must be
thrée permanencies when + oc is substituted for  in’ these
functions, ‘and three variations when — oc is substituted.
That the first condition may hold the value of Y,, viz.

o —4})’-—27q'mustbepositive, ] :
or - AP+ <0, -
and this cannot be unless p is negative. -

If, then, p be negative, and Y, positive, we will have by
the substitution of — for z, the following order of signs,
viz. : — 4+ =,
giving three variations, and thus proving the existence of
three real roots. The condition, then,

\ Ap+2g <0
is essential, and auﬂicnent to mdxcate that all the roots are
real . . i .
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CHAPTER VIII.
6N THE NUMERICAL SOLUTION' OF EQUATIONS..

SECTION L
Cardan's Rule for solving Cubic Equations.

161. Ler 2* 4 Az*+ Br 4 C'=(, be any equation of
the third degree. In order to render it more manageable
let it be deprived of its second term, (Art. 144.) and et the
resulting equauon be :

bz fc=0.
Assume z=y+2
Then z‘=y’+z’+3yz(y+z,)

or transposing - »
2 —8yzz — (y + 29 =0.
Consequently 3yz=—dandy*+2>=—c.
.. from the 1st ra—m——b.y,,

whieh beu'g substituted in \he other, ﬂm leeomea

=0 -

y- 27y’
orcleanngoffmctnons y‘+cy’-—-b—-

< solving the quadrtic §*=—5 ‘¥ ,/(f-. Ii'-) = A3,

and ’ 23==—-— Q/(4 27)==B.

Consequently, as 2 =1y + z, we have the following general
formula for the roots of an equation of the third degree.

¢ b
z=v { 2'*“/(4 27>§ +¥ § a—v (g +27)§
This is Cardan’s formula.
The above formula would appear to give but one of the
roots. When, however, it is remembered that the values of

’
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y and z are determined by extracting the cube roots of A®

and B?, which operatxon is equivalent to solving the equa-

tions .
Yy — A*=0, 2 — Bi= 0,

it will be seen that each of them must have three values,
which are readily determined. " -Thus,
The first of the'above equations is equivalent to

(y—A) (" + Ay + A =0.
The first of these factors gives the root A, the other
solved as a quadratic will give

—14+v3

yu__2—_A andy=_..1_—\/§

2
Similarly the other values. of zare ’ R
—14 - 3 —1—y—3_
3 B and 2 B.

It might now appear that the three values of y combined
with the three values of z would give nine values for z, and
that, consequently, an equation of the third degree, has 9
roots.

The reasonmg, however, is incorrect, for the values of y
and z are subjected to the condition that

o b
ye=—ar
SIX, however, of - the combinations alluded to above give
imaginary products, and are therefore to be rejected.
he ‘only values of z are

) . A4B
—14v—38 —1—y—3
g A+ 7 B
—1—y—3, —1+y—3
5 A+‘ 5 : B.

162. If < -{-27 be negatwe, that 1s,lf 4b’+270'\0

the values of = apparently. become xmag'mary 5. altbough we

know (Art. 160) that this is the only case in which they are -

all real; and as no means have yet ‘been discovered for re-

ducing the complicated 1 1mag1181ary forms to real values, Care
0 18+

N
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dan’s rule fails to give the roots except when two of them
are imaginary. The case in which the rule fails is called
the irreducible ‘case, and has occupied much of the atte
tion of many distingnished mathematicians.

ExanprnEs,
Let the equation be :

#—620+32x4+38=0

Here it will first be necessary to remove the second tertm,
for which purpose the roots must be diminished by 2. Thus,"

1 -6 +3 133 (9

2  —8 —10
—4. B 28
=2 =4 ‘
-2 -

2

<

mitheeq-p‘\igh S
o P—9y+28=0.

Hence bg;oand'e..ss.l.g._y-éflsm-m.sm;

wd  y=V_AFB+YSH—B,

.’.tny+%=-—'2. ’

EX.&Bolvex'—Gz"+.3-:t—i8—0-,by Cardan’s rile. .
: SR Ans. x =86.

SECTION H.
. Recurring Equations. -
163. It has been shown (Art. 147, ef seq.) that a recurs
¥ing equation of ah odd degree has one of its roots = + 1
or — 1, according as the signs of the eqtial coefficients are

diffevent or alike, and that the remaining roots are the ong
half reciprocals of the other half; that if the equation be of
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an even degree, and have the signs of. the equal -cpefficients
.alike, the same law holds good respecting the roots; and
that if the signs of the equal coefficiente be different, and the
middle term be absent; two of the roots are 4+ 1 and — 1,
and of the rest one half are the recxproca]s of the other half.

© 164. On account of these peculiar properues of recurring
equations, they may always be reduced to -others of lower
dimensions ; one of an od(Y degree may at once be depressed
to the next ‘inferior degree, by dividing by the factor 2 — 1
orz+1, for which purpose the method of synthettc divi-
. 8ion is admirably adapted. -
. _Thus, let 1t be required to remove the factor z-4 1 from

" the equation -

5 as — 7x‘+8@'+82’=——7¢+5n0.
The operatxon is

6—7 +8 +8 —7 45 (—
=5 .412,-=2" 12 " —5
—12 20 =12 +5 .0

The resulting equation is therefore -
o B —124 0= 122450, -
a recurring equation of the fourth degree. :

165 If the equation be of an. even degree, the middle
term being absent, and the equal coefficients affected with
oppasite sigus, the factor 22 — 1 may be eliminated, and the
equation thus: depressed to a degree lowet by 2. than she
original one,

- For an example, let the equatlon
a8 — 7m’+9z‘ 9m’+7x—-1=0

be proposed. .
S 1) R SR 0 -9 7T —1
o o 0 0 0 .0 ’
-1 o1 =1 10 =7 1
11 -7 10 -7 1 T

the resulting equation is therefore . -
VB + 1004 1=0,
a recurring eauation of the fourth degree,
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166. A recarring equation depressed as in the last two
articles, or one whose degree is even, and the equal roots
affected with like signs, may be reduced to another of half
its degree.

To prove thls, let 4
B A Bt L +Bz* 4+ Az 4 1
be a recurring equation of the kind required.
Dividing by z~, it may be written,

(=4 Dy ra(e by eaeel

+ &c., =0, (4)
Now, we have shown, (Ex. 5, p. 159) °
that if 2+ y=sand zy=p, °
1"+y'—8’-—2p,.

Bty =s—4sp+2p,
O T : : n__4
T

= +y -c“-.—m""-'p +n. n;S sr—tpep,

i e

Let now z+-£—=;z, then 2 ..—:-- 1,
and the above formulas become °
1

z +?=fz
TR
: x° .
- . l T
z‘-f;::z'—ﬁz (B)
) 1 N ' )
#+Féﬁf4ﬁ+2

a.“+—- = z“—n.z""’ +n. "—5—3.2"“-@
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Which values substituted in (A) will give an equation of
the nth degree in 2, and if the roots of this be determined,
" thoseof (A )will be found by solving the quadratic

1 .
:c+-5=z, orzd—zx=—1L

The values of the different functions need not be calculated
separately, as it is readily seen that any one may be derived
by mubiplying the last by z, and subtracting the one imme-
diately precedmg Thus, :

=424 2=(2"—82) z— (2*—2).

167. Ex. 1. Let the reclirring equation
42— U267 —13 224+ 6720— 22U +4=0

be given for solution. D:v;dmg by 2%, and arranging as in
(A), it becomes

1ot g) (4 )+ (4 3) - =0,

or substituting the functions (B) :
4(2*—82)—24(*—2) + 5672 —T13=0,

that is 42— 24294452 —25=0.

By trial, we readily find one root of this equation to be 1,
and depressing the equation, we have |

429— 202 +26=0, )

for the equation containihg the other roots; and this equation
being equivalent to- (2 z—5). (22 - b) =0,

bas two equal TOOtS, ViZ. s
=
. I-}tmng thus obtamed the values of 2, we have fmm the
equation - - z‘—zzn—-l
the following m‘—-w= - 1 and 2% — gz= -1,
of which the first glves L

z=gkgv—3
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and the second
r=2or l—,
the roots of the given equati‘on are therefore -

,2, ,ad -I—J—Sand—l——;l—\/—3

That the last pair are the reciprocals of each other may be
shown by obtaining their product, which wdl be found to be
unity.
Ex. 2 Let the equatlon : ]
- llz‘+ l7z’+ 17 2% — 113+ 1=0
be given. . . ,
This equation has necessarily the root #'== — 1, and de-
pressing, we obtam "
—122° 4 29 2% — l2z+ 1=0;
or dividing by x%,
z-“+ = — 12(a:+-) +20=0,

which becomes by substltutmg the values (B),
2=-122 421 =0,
whence R
z=9o0r3,
and from the equation : !
' P—2r=—1, -
which becomes = 27— 9:c==—1andz‘ 8z==-—l

we oblain ‘ x _—;1: ¢77, andx=3:!: ¢5.
Consequently, the ﬁve roots are ‘-
+ gV T ¢772+2¢5and — V.
Ex. 8. Determme the roots of the equauon
z’—é—z‘—‘l—?zﬁ+ 43:l:’+——.'c— 1 =0.

Ans. 1,2 ;—, — 8 and ——;.
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Ex. 4. Determme the roots of the equatlon

3 .
g —17-51"7{-23:t+17—-0.
o s, -1, —5, —%,'2+J3,and2—¢3.

:c’+2 zt— 175

.Ex. 6. Depress the equation . : '
827 — 42+ 172° — Bt — 2B a°+ 1729 — 42+ 3=0.
Ans. One root is -—-1, depressed equation 3 y2—7 y?

Ex. 6. Depress the equatxon .
62t —212° 41520 — 2lz+6=0‘
» Ans. 2y —7Ty+1=0.

Ex. 7. What are the ro;Jts of
petroinZeotnulo_rloti=o
A sT gt I=

’ - 18 1 .3 1
.dns.\ —-l, 5, -—, -+§\/5 aud§?§¢5.

Ex 8. What are the roots of T
20:0‘-—-109:t‘+146x’—l46x'+109:c-—20 0
1 l
Jns. 14,4 10 0‘/ —11 tmd10 IO‘/ 11.
Ex. 9. What are the roots of

80— 91y«+30y—91y+3o =0.
.anssl __.+ V- 391and——— o/ — 391,

168. There is a class of equattons very analogous to recur-"
ring equations that likewise 'admit of being depressed to
others of half their degree. They are-of the ﬁ)rm '
Az"‘”+Bz’"“+Cz"‘"+Dx"‘" ;I;Dx’:pCz":l:B:l:
FA =0 - -
the upper sign being used when n is odd, and the }owel

when it is an even number. In equauons of this kind the

yoots are of the form a, — l b — 117, &e.’
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First, let n be an odd number, as for instance 3, so that

the equation may be of the form
Az*+ Br* 4+ Czt* 4+ Dx*—Cx*' 4+ Br—~A =0.
Dividing by z*, it becomes

A(z'———)+B(:n'+ )+C(z--)+D 0.
Asumenow  z—1'=z
then z~'+:?‘-z'+2‘

4 z'--;-,ézws_z.,

Hence by substitution, we have
Aza 4+ B2*4+3A"

+C
an equation of the third degree.
Next let n be even, or the equation of the form ‘

z24+2%B=0 _
- +D

Azx® 4+ Bz’ + Cz°+Da:5+Ez-—Dz~¢+C:cﬂ—Bz+ A=0.

Dividing by z*, it becomes

A(z‘+z‘)+B(a:"— )+C(:cf+ z,) +D(a:——) +E=0.
Assummg as beforx; z—:l; =2z,

we have as: befare a:’+ =2’+2, af— L az'+3z,

also 1"+;‘=z‘+4z'+2. E

Substituting these values, we have = = . _
Az‘+Bz‘+4A l z’+8B Z4+2A°
+2CL=0.
| g
Havmg determined the value of z from the depressed
equation, when it is posslble 50 to do, that of z may be ab-
tamed from the equation.

x_5=z, orz®—zze=1,

]
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. , Examries,
Ex. 1. Let it be proposed to solve the equation
935 —Tr+3£+9=0. .
Dividing by 2%, and arranging, this becomes
9 (=4 1)—8(z— 1)—m=0.
This, by the substitution above indicated, becomes

92— 3z =56

R - '8 7

WhenceA ‘ . z=§o’r__3_,
and the equations z’—gz=l, nndz’+;-é:=-l,

give the following values for‘ T, vizi, .
z=3,_——l —~+ J85and————J85.

Ex. 2.- Depress the equauon
24 628 — Q0 25— 6z41=0.
Ans. y’+6y—18=0.

Ex. 3. What are the roots of ' -
41‘-—17:':x 4z’+l7:€+4=0

 Jdns. 2:t¢5,and ﬂ:8¢65

.| ———

SECTION IIL
Determmatum of Integral Roots by the Method of Divisors. /( (lg

169. It has been demonstrated (Art. 138) that no equa-
tion, in which the coefficient of the first term is unity and
the other coefficients integers, can have a fractional root.
: In such cases the roots must either be.integers or intermina-
f ble decimals. It will be shown in the next section how we

’ may approximate as near as we choose to the true value of
those decimal roots, which method will likewise apply to the
determination of the mtegral roots figure by figure. _The

e



218 DF;TEB.MINA”IO!(' OF INTEGRAL ROOTS BY D!V'ISOBS.

following neat method of determining the ‘integral roots
was proposed by Newton, and is called the Jllethod of
Divisors.

Let z*+Az"~".. x’+Ga:‘+H:c’+Lx’+N:t+P 0,

be an equanon of the nth degree, the coefﬁcxents bemg all
integers. .
Let @ be an mteg'ral root, then -

a"+Ad* ... a-"+Ga‘+Ha”+La’+Na+P==0._
o ;==—a"—'—Aq""’..'.——Fa‘—-Ga’—Ha’—La”—N.
Hence every integral root must be a divisor of the last
term P. Call I—) = Q,and we have by transposmon, and di-
viding by a, . N .
Q-+ N=—a""-—’-Aa_"“. ... —Fo?—Gi®—Ha—L.

a
Q.+N

Consequently is an mteger Calling it R, and trans-

posing L and dxvndmg a, we have

RtL —3—rAg"—t .'..'.—Fa’—Ga—AH,

R+1L

is therefore a whole number

Proceedmg in this manner, we shall ev1dently obtain

aE_Q,C%_*_N R+I.‘< S_:L.=T,&c., all in-

tegers, the last quotxent bemg —1.

_.R,

170. From the above it appears that-if ais an integral
root the last coefficient must be divisible by it, so must the
sum of the quotient and preceding coeficient ; of this quo-
tient and the preceding coefficient, and so throughout, the
last quotient being —1. )

Having, then, determined the integral divisors of the ab-
solute term of ‘the equation, we. must submit all of those
between the limits of the roots found by the methods pointed
out in chap. 6, sec. 3, to the preceding tests; those which
satisfy them all will be roots of‘the equation.
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171. The preceding proposition has been explained
above on the principles pointed out by Newton. The fol-
" lowing method: is perhaps more direct, and, moreover, will -
serve to point out the forrhula for calculation,

Let, as before, ) .

"+ Az"'. ... 4+ Gzt 4+ Hp? + L2t Nz + P =0,
be the equation, of which @ is an integral root. The equa-
tion is divisible by (2 — a), and of course by a—z. Writ-
ing the coefficients in an inverted order and applying the
method of Synthetic Division, the “operation will stand
thus, calling the quotients as before, Q, R, S, &c.

-alP 4N 4+L +H +G....+A +1
-

+1 Qa R A—a—1
) P N+Q L+RH+8 —a 0
Quotients | Q" . R 5 T : —1

In which it is at once perceived that the sum of éach quo-
tient and the next coefficient must be divisible by A, and
that the last quotient must be —'1. :

" Having found -one of the roots, we may use the depressed
‘equation :

P

Q4+Rz+825..0u. . mar i =0,
or its equivalent - o R
P+ (N+Q+ (L+Rz..... —az*'=0,

to determine, the subsequent roots.

Exampres.

Letit be fequired to det_qrmi_ne» the integral roots of the
equation o P L
2#+5z+20—162°— 22z — 16 =0. )]
There being but one change of signs, there can be but one
positive root. L

Now, the superior limit of the roots is (Art. 154)
) 1+ 16 or 4, -
and if we change the signs of the alternate terms, the equa- ‘

tion becomes .
bt 42+ 162 — Wz 4 16 =0,
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in which it is readily seen that b is greater than the greatest
root ; — b is therefore an inferior limit to the roots of (1).
The only divisors of 16 between these limits are

+% 4+ h—15—2 —14,
all the others may be rejected. It is also at once seen
that 4+ 1 and — 1, will not satisfy the equation; it is ouly
necessary, therefore, to try the remaining divisors.

2) —16 —20 —16 + 1 45 +1
=8 14 —18 =T —1 ¢ oy of 1st de-
—2) —16 —28 —30 <14 —2 0 pressed equation. .
+ 8 410 10 2
—4) —16 —20 —20 — 4 0, coeff’ts of 2d equation.
4 4+ 4
—16 —16 —16 0, . coeff’ts of 8d equation.
Hence 2, — 2;and — 4, are roots of the equation (1), and
the depressed equation is
16416z +162°=0,
or P23+ r+1=0,
of which the roots are imaginary.

Ex. 2. Defetmine the integral roots of
a4 23— 6229 — 80« 4 1200 = 0.
Here - 1+ /80 =9 is a superior limit, .
and —63 is an inferior limit. y
‘The only factors of 1200 that can be roots, are thérefore
86,5 43,21,—1 -—-2-—3—4—-—5—6—8—I12, &c.
Arranging the coefficients and trying the various divisors,

beginning with 2, since we can at once see that 1 is not a
root, the operation will stand,

2) 1200 —80 62 1
, 600 260 99 50
: 520. 198 100 - &1
and 2 is not a root. L
3) 1200 -—-80 —62 1 1
40
—30

40 not being dmslble by 8,8 is not a root. Preceeding in
the same manner we shall find 4 is not aroot.
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5) 1200 —80 —62 1 - 1
240 32 —6 —1
6) . . 10 =80 =5 0
P 20 60 . &
860 30. 0 -

Hence 5 and 6 are the positive roots. The depressed equa-
tion .

80 2° 360 z + 1200 = 0,
or ' .2* 4+ 122 +4+40=0,
- will furnish the i 1magmary roots,.
o —-6=|: 2v 1.+

Ex. 8. Determme the roots of -
- x‘—5z'—5z’+45a:—36=0

Ex. 4. Determme the roots of
: .1."-—10.2"+29x‘—10.z‘—623:+60 O

Ex. 5. Determine the roots of
61"—43:1:'+ 107z’—w8x+36 =0.

—_—

SECTION IV

Horner’s Metlwd for Jpprozzmatwn to the Valuc qf the Rooh of an
Egquation.

172. The discovery of the.best method of appmxlmatmg
1o the true value of the roots of an equation, has been an ob-
ject of much attention to mathematicians. Various expe-
dients have been proposed for-the. purpose; several of which
have acquired much celebrity. Amongst these, the method
below, which was first published in 1819, by W. G. Horner,
of Bath, England, is by far the best, not only on account of
its snmphclty, but also of its brevity. )

The principles upon which, it is based are the following.

Let m be a number which dxﬂ'ers but little from, the root
of the equation

T Vez Azt N+ P=0,

so that, if z=mm + 7, 1 mayldb: a small quantity.
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Then, if the equation be transformed into another,
V=4 Ar-t ... ..., N'r4+P' =0,
whose Yoots are less by m.than those of the equation
Y =0. :
We may use the last two terms N'7 4+ P’ =0, as a trial
uation by whieh to find a near appronmzmon to the value

of r, which call 'm’.

If we again transform the equation

V=0

into one whose roots ave equal to those of V* =0 diminished
by m'; we may use the last two terms to find m”, a nea.r
approximation to the value of m’.

Thus proceeding as far as wa wish, and we will have

z=m 4+ m' + m', &
173. On the above principles is founded the followmg

Rure

For approximating to the true value of the yoots of an
Eguation.

Ist. Find by Sturm’s theorem, or by trial, the 31tuatlon
and first ﬁgure of the real roots.
2d. Transform the:equation (Art 143) so that its roots

shall be those of the original equation -diminished by the’

part of the root thus discovered.

8d. With the absolute term in this transformed equation
for a dividend, and the coeﬁcxent of & for a divisor, obtain
the next figure of the root,

4th. Again transform ‘the equa.tlon s0 that its roots shall
be diminished by the value of the figure last determined, we
may thus find another figure, and so proceed until the root
hasdbeen obtained to as great a degree of accuracy as is de-
sire

No'rn LIt sometlmes occurs that the mgn of the absolute
term will change in the course of the operation. Unless
this change is aceompanied by a change of sign in the coeffi-
cientof 2, the figure which gives rise to this change must
be incorrect.

Not 2. To detérmine the negatlve roots, change the signs
of t}])::f alternate terms in the- eqtnmn (Art. 139), and proceed
as before,

-
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Ex. 1. What is,the root of the equation
r#— 17254 64xr—860 =0?

The integral part of the root is found by trial or by Sturm’s
theorem to be 14. The subsequent operation will be as fol-
lows, viz.: . : .

1 =17 - 5 ~350 (14.954
M4 —42 - 168
-3 .12 —182
‘14 164 170.379
i1. ~ 166 . T11.621)
14 23.81 10.740[875
25.9 189.31 —.880[125
9 24.12 .865(275664
2%.8 213413 - =—14/849336
9 " 1.3/875 :
2776  2U4.8176
* 5 1.3/900
‘2180  216.2076
5. 111416
27.854 216./318916
.4 111432
%52‘ 316./430348
27.862

. 'The .above operation has been carried on precisely ac-
cording to the directions of the rule. It will, however, be
perceived that more decimals have been used than were
necessary 10 give the root true-to. the third decimal place.
In fact, had aﬁ the figures tothe right of the vertical lines,
and those in the left hand column below the asterisk, been
omitted, the result would have been the same, and the labour
much abridged. - '
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The operation would then stand thus:

1 =17 54 —350 (14.95407
M — 42 168
— 12 —182
14 154 170.379
11 166 — 11.621 °
14 23.31 10.741
. 25.9 189.31 — .830 -
9 24.12 865 o
268 213.43 — 15
9 14 .15
277 2148 -
14
2,1,6.2

The above contraction is .performed by cutting off from
the coefficient of x, after the operation with the figure 9 is
completed, one figure, viz. 3, to the right, and from the cor-
responding coefficient of x%, the two figures 77, then proceed
with the rest as before, until the operation with the figure 5
is completed, after which cut off one figure in the column of
&, two in that 'of z9,-three in that of z*, and so on. 8

The following example will still further illustrate. the rule.
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Ex. 2. Extract the root of the equation
P44 —82+102°—22 —962=0.
Here the first figure of one of the roots is 3.

1 4 -3 .10 —2 —962(3.385777
3 2L & 12 W
7 18 64 ‘190 —3892
3 30 144 624 290.21133
10 48 2WS  8H4 —101.78867 -
8 39 261 153.3711 94.64260
3 87 ~ 460 967.3711 — _ 7.14607
8 48  42.237 166.67T14 6.18160 '
16 1356 511.237 1133.9425 — .96447
3 5.79. 44.001  49.090 . 86798
193 140.79 555.238 1183.032 — 9654
8 588 45.792  50.006 - - 8682
19.6 146.67 601.0,30 1233.128  — 972
"8 5.97 12.6 - 3.19 868
9.9 . 15264 6136 12W632 — 102
3 606 126 8.19 .
202 (158706262  1289.5,1 : : .
3 . 12.6 . :

20.5 638.8 1%99

: 4

124,0.9

The root has thﬁs been found true to- six places of deci-
mals. If another period had been used, it would have
been obtained to 11 decimal places. .

Ex. 3. Extraét the root of the equation
— 12 + 122 —-3=0.
- Ans. & =2, 858088

Ex. 4. Find a root of the equation

4+ 43824420+ 65— 84321 =0.
JAns. x = 8.4144547.

Ex. b.. Find the roots of the equation
»P—WBr—AU=0.
Ans. 5.250785, — 1.101601 and — 4.149184.
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Ex. 6. Reqmred the roots of -the equation
— 12224 122 —3=0.
JAns. 2. 85808 .60602, .44328, and — 8. 90738

Ex. 7. Find all the roots of the equation
22*4+31r°—4xr—10=0.
Ans. 1.624819, the others are imaginary.

Ex. 8. Extract the cube root-of 3 to 7 decimals, that is,
find the root of

$—3=0.
Ans. 1 4422496.
Ex. 9. Extract the fifth root of 7. 624 t0 7 declmals
Ans. 1.601 1932
. .
SECTIOﬁ V.
Binomial Equations.

174. Binomial Equations are such as consist of but two
terms ; the one being the power of some unknown quantity,
and the other an absolute number. . The most general form
under which such equations can. be presented is

S YEar=0,
which, by the substitution of & for %, is reduced to

2+ 1=0. -
It is in this form that they are treatéd of in this section.

Cor. Since = %, y=ar==zx Va—";

176. If n be even, the equatien 2" — 1 =0 or z" =1,
has two real roots, viz. 4 1 and — 1. The binomial 2* — 1,
is therefore divisible by (z + 1) (x—1) =2*— 1. Per-
forming the division, the eguation is reduced to

P 2+ 10,
all the roots of which must be imaginary. ’
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With respect to the equation 2" 41 =0, or 2" = — 1,

all the roots are imaginary, two of them being ==/ — 1.

The expression 2" + 1, is therefore divisible by (2 + +/—1)

(F—v—=1)=2+ l the division leading to the equa-
- tion

gt .. kBt 1=0.

If n-be odd, the equation 2" 4 1 ==0 or 2°= — 1 has
one real root, viz. — 1; the remaining n — 1 roots " be-
ing imaginary.

Similarly, the real root of the equation 2" — 1 =0 is
z=1,(n bemg odd,) the others being i 1magmary

176. No two roots of a binomial equatlon can be equal

For . a*t1=0
being such an equatlon, its llmltmg equatlon (Art 157) is
nztTl=0, .

which evxdently has no root' that belongs to the ongmal
equation. (See Art. 158.) .

173. If a be one 1magmary root of the- equatxon _
—1=0,
then will every power of a likewise be a zoot. )
Fotf, since a" = 1, e*" =1, a** = 1, &c. ; therefore,
‘ a, @&, a4, &c.,
are roots of the equation,

The roots of the equation may thereﬁ)re be represented by
the various terms of the series,

cesa” ,a"a 'l.a',a’ ..... &ec.,

in which, however the terms may differ in form, they can-
not present more.than n values, othermse the equatlon would
have more than n roots. -

178. If « be one imaginary root of z* + 1 = 0, then will
every odd power of @ likewise be a root.

For, since a” = — 1, every odd power of a* will be equal

— 1; consequently, the different terms of the series
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e=%a%a""' ad, o &c,
will all be roots of the equation
z+1=0.

179. If n is a prime number, and a one root of the equa-
tion .
»—1=0,.

then will .
be all different, and therefore will form the complete series
of roots.

For, if possible, let @ =af, p and .q both being less than
n, then

a"‘ =1,

in which p — ¢ is less than =n.

Now, let p 1be contained in n r times, leaving a re-
mainder p’, wlnc will be less than p — g, )
then @=a’ PVt P gV g =]
. T oar =1,

If p” be the remainder arising from dlndmg 7 by p’, we
will have in like manner

a” =1,
" Proceeding i in this manner, we shall ﬁnally arrive at the
equation
a=1,

which 'is manifestly absurd.
Therefore, a® = a? is 1mposs1ble .

Since, then, 1. @, a® . n—1 gre all dlﬁ'erent, and each
is a root, they must form the complete series of roots.

Cor. Since a™ = 1, we will likewise have

for the roots.

To illustrate the above theory, let it be requlred to deter-
mine the roots of -
A »—1=0. :
One root is 1, therefore, dmdmg by z — 1 =0 the equa-
tion becomes
b+ 1=0,
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a recurring equation of thé fourth order, whose roots may be
found by (Art. 166.) ;

180 If p and ¢ are prime to each other, then 2® — l =0
— 1 =20, have no common root except 1. .
For, if it be possible, let'a be a common root, so that

a*==l,a7=1.

Let p = mq + ¢', in which ¢’ is less than g,

then - . af=a™ X a'=a"=1.
In like manner, if q =nq’ + ¢", we will' have
aqll = l’

¢'" being less than ¢'. Proceeding thus, we will finally ar-
rive at the equanon ) . '
a=1,
whlch is 1mpossxble.
18l.f n=p.q. 1, and r bemg prime numbers,)

(s
thentherootsofx"= wxﬁbetherootsof 2P=1,29=1
and 2" =1.

For a.“=z"'=(z’)"—l,
o . . .'c’ =1,
similarly . =1,
and . =1L

The roots of these equatlons will therefore satisfy the
equatlon 1
2 —1=0.

182. When = is the product of two prime numbers, p and
g, the roots of 2*—1 = 0, will be expressed by the products
arising by multlplymg every root of a*—1 -0 by every
root of z9—1=

Let the roots of z'—l;-=0 be
La, e a....d},
and those of 2*—1=0 be
1,b,b%0%....a07",
then since (@)"=1,and ()" =1,
therefore (a*")" =1, and a"b* is a root
of the equation =1, (goz"—'l =0.
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Moreover, these products are all different, for, if possible,
let &b =a'd’, then we will have &~ fa=di—?,
bat a-%isaroot of *—1=0,
and b-*isaroot of z*—1=0.
The two equations have therefore a common root, but this is
impossible, (Art. 180.)

Since, then, all the products are roots of z*—1 =0, and
since no two are equal, and their number is pg = n, they
form the complete series of roots of the given equation.

If p = g, the above demonstration fails. to give the series
of roots. .

In this case let the roots of 2*—1 =0 be
Laad,a....a".
H, then, we form the series of equations
=1 2#=a, 2*=a, 2* = a’, &c., A
the mrootsoftheaeett]lnaﬁonswillbemots of z»—1=0,
and as they will evidently be all different, they comprise the
complete series of roots.
Now the roots of a* = a* are (Art. 174) equal to those of
2* == 1, multiplied by ¥/a*.
The complete series of roots of z*—1 = 0, is therefore
,aq,a....6" :
Ya,aYa,dYa....a""'Ya :
gcaa, e, AYd....eYa
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CHAPTER IX.
SECTION L,
" Method qundda;mz‘mtle Coefficients.

183. If there are two series,
Az* + Ba + O + &cuy

and . M:c"‘+Na:"+P:z’+&c,
in which the indices are arranged in the order of their mag-
nitudes, beginning at the least,and which are equal, whatever
value may be assigned to 2; the indices and likewise the
coefficients of the corresponding terms must be equal.

For if a be not equal to m, one of them, as a, must be the
greater. Dividing by ™ we-shall have

Ax*— "4 Bpp—m 4 Car—"4-&c., = M+ Nz*—=4-Pa*~=4
f&.cn . . » » - ’
whatever value we assign to .. But if 2 = 0 all the terms -
except the first in the second series will vanish, we shall
therefore have M = 0; but this is impossible. Hengce

@ =m,
and the equatlon above becomes
A + Bz*-4 4 Cz—*+4&c., =M +Nz-—-+P:c'—'+&c
If in this x == 0, we shall have
A=M.

Agam, since the first terms of the series are identical, we
have also .

Bz'+Cz‘+&c, = Na"' 4 Pz 4 &e.
The same reasoning will evidently show that
" be=n,and B=N,
and so0 for the othgr coefficients and indices.

184. If a series -

' Aaf+Bi°+C’zﬂ+&c.,
in which the indices are arranged as before, be equal to zero,
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whatever value may be assigned to z, each of the terms
must be equal to zero.

For since Ar 4+ B 4+ Cr 4 &. =0,
we have A+4+Brr*4+Cr—*+4 &.=0.

In which, if we substitute O for x, we will have A =0,
and, consequently,

Bz 4+ Cx* 4 &c. =0.
If we divide this by 2*, and make x = 0, we shall have
B=0,
and so for the rest.

These two propositions being of great importance in the
development of functions and the summation of series, we
shall illustrate them pretty fully by examples. In applying
the method we are generally able to detect the nature.of the
indices, and thus avoid the trouble of calculating them. -

ExanpLEs.
Ex. L Let it be required to develope i%z-' in a series.
Here if 2 = 0, the value of the function is 1. Conse-

quently, the first term of the series is 1. Theother terms
can have no negative indices. For if one of them is of

the form Mz —", or %—, this would be infinite, when z = 0.

In order to make the demonstration general, we. will
assume - .
1

Tz = 14 Ax* 4 B2? 4 Ca* + Dzt 4 &e.
Clearing of fractions and transposing, we have
1—z—Az*+!—Bp+' _ Cr+!
=14 Ax* 4+ Bz? 4 Cz* + Dz*,
Equating the exponents, we have
a=1, b=a+l-2.C=b+l=3,d=4,&c.
Also, A=—1,B=—A=]1,C=—B=—1D=1.:
Substituting these values, we obtain )
%zé 1—2 4 2% — 2 24 — &¢.,
which may be verified by division.
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Ex. 2. Develope -:—-_4_'_—::: '
142 . . ‘
Assume —™ 1 4 Az* 4 Ba? + Cx* + &e.
- Clearing of fractions and transposing, we have
14224+ Az*+ '+ B+ ! 4-Ca+ 1 &e..
= 14-Az*4+ Bz’ +Ca’+ Dz’ + &c.
‘Whence a 4='- 1, b=2, ¢c=3, &c.,
lJ-a:

- Ex. 8. Develope m."

: 1
Assume (l+x)’ "1iR 240
+Dx‘+&c.
Clearing of fractions we have
‘1=1+Az+ B4 Caz*4 Dz4+&¢
T 42z +2Ax'+2Ba."+2Cz‘+&c
+ @+ Az+ Bot &

or 0=Az+ Ba*4+ Ca*+ Dot + &o.

2z 4+ 2A2° 4 2Ba® 4 2024 + &e.
L 4 4 Ax®4 Bzt 4 &e.
Whence A+42 =0orA=—92
: B4+2A41=0orB= 8
C+2B4+A=00rC=—14
D+2C+B=0oaD= 5 &,
GgEp e 8e — 42+ b —de.
Ex, 4. Develope @
&—a
Assume this equal to the series
¢+A:¢"+Bx‘+Cz‘+Da.‘+&c,
and clear of fractions. ' Then
a’:a'+Aa’z“+Ba’z’ + Ca'x* + &c.
—ar® — Az — B 4 &,
20*

=1+ Az + Ba* 4-Ca®
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Whence n=2,b=n+4+2=4,¢c=b0+4+2=86,
also Add=a or A =—

—‘hh-

Bo’=AorB—-a—‘
1 -
Ca’-—BorC=;
Hence s z* ¢ x®

S o=at oot +,,&c

Ex. 5. Develope v'a® 4 2°.

Assume /@ {73 =g + Az + Ba* 4 Ca® 4 Dzt+&e.
Squaring @*+2* =a* + Aaz 4 Baz* + Caz®+. Dazt+&e.
_ +Aaz 4+ A% 4 AB2® 4 ACz* - &c.

+ Baz® 4 ABx* 4 Bzt &e.

+ Caz® +ACz*+&e.

.+ Dawt+&e.
‘Whence 2Aa=0 orA=0
2Ba =1 orB=i
: . . Za
2Ca =0 C=0
: ) 1
2Da=—B'OrD=—8—a-a,
and s/a‘+z°=A+——-z‘+&,c ‘
8at

The operation would have been shortened had we
assumed
~/a=+ _a+A:c=+‘Bx'+C:c°+D:cs+&,c
Squaring we have

a‘+z’=a’+Aaz'+Baz‘+Caz‘+Da:c'+&c.
+ Aaz® 4 A%t + ABa® + ACz® 4 &e.
+ Baz*+ AB2* + Bz® 4 &e.

‘ + Caz® 4 CAzs + &c.
) 4 Daz® 4 &e.
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‘Whence 2Aa=1 oA=L .
' 2a
1
2Ba=—A* orB=--_8_aa
o 1
‘2Ca=—2AB: orC=l6a5
b
2Da——2AC—B’0rD=—mA
z28 . B.ax®

Hence V'@ F 2 = d* +
&c. :

‘This series is defective since the law of variation' of the
terms is not manifest. If we write it as follows, this defect
will be remedied, though the law can still hardly be con-
sidered as demonstrated.

Vaﬂ-—.‘ =¢’+§—a—2.4aa+2.4,6a5' 2.4.6.807+&c.

Al +

—z -
\Ex 6. Develope Tresa

Ans. 1—2 a:+:c’+x'-2 z‘+m‘+x‘—2 z74-x284-&c.

l+3z
Ex.7. Develope 1 ez i

Ans. 145249 a:’+ 18 254+ 17 24 &c.

a

. Ex. 8.~ngelope z—a;‘f .
- a® a* @

Ex. 9. Develope l—li"';; .
Ans. l+3:t+4.1:’+7:t‘+lla:‘+&,c

a4 2x
. Ex 10. De'elope (———;Tz:s.

8.

s Pr—
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185. Develope (1+2)".
Assume (14 z)*=1+ Az + Bz* 4 Cz* 4 Dz* - &c.
If we square both sides, we will have
(14 2z)**=1+Az+ Br*4 Cr+ Dri &c.,
+ Az 4 A'z* 4 ABz* + ACx* «
+ Bz* 4 ABz* 4+ But “
+ Cz* +ACx “
+ Dzt “
This series is evidently perfect so far as the last column
inclusive.
Now, (1 + )= {(1 + 2)* = {1 + Rz + 2}
and since the coefficients A, B, &e., are entirely independent
of x, we ghall have

{1 +(2z+a,¢) P =14 A(2242%)+ B(224-2%)°4-C (224 £2)*-
=142 Az4Azt
+4Bz%-4+4B2*4+ Bzt
+8Cz*+412Cx* 4, &e.
+16Dz*+, &¢

Now, as this series and the former must be ldenuai.l, we

have 2A=2A,
2B+A’=4B+AorB

B(A_z) A.(A—1).(A—2)
=" 7.8
A.(A-1)(A-2)(A-3)
2.3.4. °*

A(A—1)
2

A +2AB=8C+4BorC=

2D4-2AC+B*=16D+ 12C_+B orD=
whence the law of the coefficients is plain. °

186. It only remains to determine A, which may be 4
done as follows.
Ist. Let n be a positive integer.
If we multiply the equation
A+2)=1 +Az4 &e.,
by (1 4+ z) we shall have .
A+2)"*"'=14+A+1)2+ &
From this we perceive that increasing the index by unity in-
creases the coefficient of the second term of the development
by unity. Hence, as the index and coefficient of the second
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term are the same in the first power, since (14 2)' =142
they will also be for any positive integral value of n.
In this case, therefore,

(1-|-z)"_.l+nz+&c
- 2d. Let n be a positive fraction asl) ;pand g bemg positive

integers, then we have .
(l‘-l-z)‘q‘=1+Az+&c.. ‘

Raise both members to the gth power. To facilitate this

operation, we may observe that as every term subsequent to

the second will contain the square or higher powers of z;

these cannot affect the coefficient of the second term in the

power. We may, therefore, so far as this term is concerned,
- consider

(14 2)% =14Az.

Hence (l+z)’—(l+A:c)’—l;l-qu+&c
‘But (1+2fP= 1 4 pz 4 &c.,
o - ' qA=porA=%. )

. 8d. Let n be a negatlve integer or fractlon, and equal
to — m.
’ 1

1
Then (1 + z) {A+a) 1+mz+ &e.
vision,) 1 —mz 4 &¢.,
42y "=1 +Az+&c;
and A= —m. .

= (by actual di-

In all cases, therefore, we will have the, coefficient of the
second term equal to the index of the power.
The coefficients are therefore

A. =n 1
B=n. n ; 1
—1n—-2, -
C==n.”2 .”3. ,&c. ,
and (1+a:)~=1+m:+n.”'; lz’-{-n.";l. ";2,,_,_ &e.
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187. Develope (a 4 z)"
It is evidentthata 4+ 2 =a (l +%): _

and therefore (a + )" = a“(l + :—)-.

Substituting :— for z in the development in last question, it

becomes .

Z\» z n—1 a® n—1n—2°
(1+7) =1+ ngtn it n om ot
o~ (a+z)'=a'-{-m“’z+n.£;—l. a2 +4-n. ’1%-1— n—-—;?
a2t 4+ &e. A o
This is Newton’s celebrated Binomial Theorem.

If n is a positive integer, we shall finally arrive at a term
which will contain the factor n — n, and which, of course,
vanishes, as will all the following terms of the general series.
In all other cases the series will continue to infinity.

188, This demonstration fails in one important point, for
though we may extend the calculation of the coefficients as
far as we please, and still find them correct, yet as the equa-
tions from which they are determined become more and
more complex as we proceed, we are still in doubt whether
some yet uncalculated may not vary from the rule which
has apparently been established. ‘We should be very care-
ful to avoid generalizing a result unless we can prove it to
be general. A want of attention to this principle has fre-
quently led to important errors. .

The following demonstration has not this fault.

Assume (14 2)"=1+4 Az 4 Ba*+4 Ca®4 &c.,

then (1+y)"=14+ Ay+ By’ +Cyt+ &c.,

< (142)*—(14+y)*=A(z—yHB(zx*—y)+C(z*—y*)+-&e.

whence '

A2 — (149", g =Y DT Y ge
=y =A-+ +C :c—y+ w-—y+ .

Put 42wy and 1+ y=w, then 2 —y=v—w, and

we shall have
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v—w z—y  x—y ' = x—
If now we make v = w or z=y,tluswnl.lbecome(see
next article)
nv"—‘—A+2B:c+3Cx’+4Dz°+&c
hence nv"=A 4 2Bx+3Cx"+44Da®+ &c,
+ Az +42Bx*43Ca® 4 &c.,
but ny" = n+nAa: + nB:c°+ nCa®+ &e.
o’ A=n, .
n—1
. 2B+ A=nA OIBBA.T,
8C+2B=nB «C=B.22%

4D+SC=nC orD=C. 43

in whlch the Iaw of the equanons is at once manifest from
the series.

Substituting-in each of these values that of the preceding
coefficient, they become

A=n
. —1
B=nigo.
n—1n—2
C=n. ‘-2—" T,

D n—1n—2 n—38
o % 8 &

‘as before.

189. If n is a whole posmve number. N

" —

z _{=r-'+w‘ Yy Syt
+ yn—l
the number of terms being n. Tlns may be proved by
simple division. Now, as this is true for every value of x
and y; let z = y and its value becomes

nz~=).
~ Next let n be a poSitiVe fraction =§.
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p
Pat z =", o that 27 = ¢,

and y=uw", or ys =’
By the substitution of these values the fraction

? 1.4
Ti—y,
7z —y ——— becomes changed into

v — w*
0'—'0'=v'—w"
v —w

But since p and g are positive integers, we shall have,
when z=yorv=1r, -

v — w?
v —w _pr! =P yr—4
vi—w gt g
v —w
1 r—9

? 1

Nowsince v=2%, *~9=g 1 =27 ,
.. when z y.wesha.ll have

2yt =L
xr —

Lastly, let n be a negatige number, whole or fractional,
we shall have ° - —¥ " _Z7Y""(y"— )
r -y r—y
g
o —y
When z =y, this becomes equal to
—_ x—ny-—n . nxn—l
= —nzx~""!
This point being thus establlshed, the preceding demon=
stration becomes complete.

P z"‘y"‘

190, If we examine the formula |
1 . n—1
PR A

(a+z)" =a"4na"~'x +‘n.. -
”n —

3 2a""x’, + &c.,
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we shall at once perceive that any coefficient may be
derived from that ‘of the preceding term, by multiplying by
the exponent of the leading factor'in that term, and dividing
by the number of terms to that place. ‘
Thus the coefficient of the fourth term is found by muln—
plying
n—1
2 ’
byn—2 and dividing by 3.  « )

ExampLEs.
Ex. 1. Raise (a — ) to the seventh power.
“The operation is as follows :

a—z) =
d’—7a':c+2l @*2"—35 a2° 435 a*rs—21 a'a:~"+7‘ax“—
4

2)42 3)105 4)140
1. 3% 3B

z being Tnegative, its odd: powers will also be negatwe, and
the signs alternate as above.

Ex. 2. Develope va—z
Here n = l, and the several coefficients will be

Y

2 .
ol S
) - g
n—1_ 1 1
n.—3—=-%§ =723
n—1n—2 1 38
ng T o TBT 246
n n—1n—2n—8 8.5
e T8 "4 T 2468 .
o= 3 1 -} 1 -3 8 -
Hence\/a-.zf_tf —g0 T—g40 x’—ma pd
6 1 ..
—za68° v & .
=ai-—i-‘- ®» 8 3:5.1:‘ — &e.

208 244 24647 24682
21



E!-S.Develc)pe(a.+z.)_,

This fanction is equivalent to & (¢'+3‘)
mmofthedﬂebpmam-ﬂb-n

Y — 1

(o) = a ‘= =
A@re) =  —fe = 23
i l(a‘)"’(z‘)'a +3e = 3.7"
». '—'—;—l."—-z(a‘)“'"(z’fs L .. 2
&e. - &

.1 2z 3z 42
@+ =t T

1 22 32 42
wte e e T e T
Ex. 4. What is the 4th power of (a — z)?

JAns. a¢ —4a’z + 6 a%z* — 4 az® + 2.

Ex. 5. What is tixe 7th power of (b4 c)!
Ans. b7+7b'c+2lb‘c'+35b‘c'+&c.

Ex. 6. Whatutheadpowerof (3+z)!
Here we shall have -
B+zp=2+83%+3320 42
=214+ x4+ 92°+ 2.

Ex. 7. What is the 5th i)ower of (x+2)?
Ans. 28+ 102* +402* +802* + 80z + 32

Ex. 8. What is the 7th power of (25 4 z)?

Ans. 128 74448 5% 46725525560 brac+ 280 bext
+84b%x5 4 14 bt 27,



.
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Ex. 9. Develope va ¥ z. a’ + .

32 862 , .
A, a4+ 2.4. 7T 2a6a Toassa T &

f"“"'\ﬁ"‘s’?ﬁ'"‘ 6 — 18

Ex. 10. Develope V8% + z.

228 . 2z 2582
365 T 5695 Beoizee T

Result. b+86

Ex. 11. Develope V(@ =z or (o — a9yl

Result. c’{l_s_x’_y.‘_gf_ﬁ’:_&c‘%

This expression is eqmvalent to

=D gk
8.5 '
(a'—z’)-i =a" '+ §a"w‘—ﬂa bt m a="z%
— %%d"x‘ - &ec.

1+ ® 8z 852 8572

%@ 24 246d 24684

- 1, @ 3x 3.5.2°
“’a+x=(“ ”>§ 2a 2da 246 ‘w‘}
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SECTION IL
The Differential Method,

Or the method of determining the- successive differences of
the terms of a series, and thence any mtermedxa.te term,
and the sum of the terms of the series.

1. Leta, b, ¢, d, ¢, f, g, . . . . be any series. '
The first order of differences is evidently
b—a, c—b,d—c¢, and g—d, &c.

If in like manner we take the differences of the succes-
sive terms of this series, we shall have the second order of
differences, as follows:

c—2b+4a,d—2c+b, e—2d+c,

The third order will in like manner be
d—38¢c+4+38b—a, e—-3d+3c—
The fourth

: e—4’d+60—'4b+a.

If, now, we examine the coefficients of the several terms
in the differences of the varjous orders, we shall at once per-
ceive that they correspond with those of the different powers
of a binomjal. A very slight attention to the mode in which
the successive differences are formed, will convince us that
this coincidence must hold good whatever be the order of
differences.

We may therefore conclude that the first term of the nth
order of differences will be, if n-be even,

—1.  n—-1 n —-2

c—n.

. . n
a—nb4n. 5 3

And if n be odd,

—a+n.b—n.n

d+&c

—1 . n—1 n;-2'
z c+n.—2——-. 3 d — &c.

EXAMPLES.

Ex. l Required the first term of the thll’d order of dif-
ferences in the series of cubes,

1, 8, 27, 64, 125.
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As 7 is odd we use the second series, and the term is -
" wi1488--8274064=6.
If the first term of the fourth order were required, it
would be equal to .
1—48+46.27 — 464+125
=1-32 4162 — 266 + 125 =0.

Ex. 2. Required the first term of the fifth order of differ-
ences in the series i
T L2228, &

The second formula gives
—1+4+562—10.2°+10.2* —5.2* + 2 =1.

Ex. 3. What is the first term of the fourth order of d1ﬂér-
ences in the series .
1, 2% 84 44, 6% .... .
‘ : Ans. 24.

Ex. 4. What is the first term of the fifth order of differ-
ences in the series

1, 5, 15, 35, 70, 126, &c.?
JAns. 0.

Ex. 5. Requlred the first term of the ﬁfth order of differ-
ences of the series

1, 6, 21, 56, 126, 252, 462; &c.

- Jfns. 1.

192. Let it now be requn'ed to find the nth term of the
series ay b, e, dy e
If we represent by d,, d, d, d‘, &c., tHe first term of the
1st, 24, 3d, 4th, &c., order of differences, we shall have
dy=—a+b b=a+d,
d =a—2 b+¢ whenced ¢=—0+ W4-d,
d y=—a+3b—3c+d d=a— 3b+3c+d .
4 =a~4b+6c—4d+e c:g—a+4b-—-6c—l—4d+d_.
or , =a+d,
d=a48d,43d,+dy,
e=a+4d, +0d +44d, +d‘,

ond the nth term= & 4 (1 — 1)d,+(n—1) =
. ote ‘

‘d‘+ “’ ‘
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This series will terminate if the differences vanish after a
certain order. If they do not, it will be infinite, and the nth
term can only be found approximately.

ExampLES.
Ex. 1. What is the 12th term of the order of cubes? in
other terms, what is 12?7

Here n=12,4=1,d,=7,d,=12,d,=6,d, =0,
KR 122=1411.7 4 11.— 10 12--}-1l lg oﬁﬁ
=l+77+660.+990=l728.

Ex. 2. What is the-50th term of the series
1.4.8.18.19.. &c.?

Here a=1,d,=3,d,=1,d,=0,
49 48
: _1+147+u76=1324.

Ex. 3. Required the 20th term- of the series 1, 5, 15, 85,
70.126, &c. JAns. 8855.

Ex. 4. What is the 30th term of" the series, 1, 38, 6, 10,
15, &c. ! ﬂm. 465.

Ex 5. What is the 20th term of the series
1, 6, 21, 56, 126, 252, 462, &c.?
JAns. 42504,

193. Required the sum of n terms of the series
. abecd...... -
Now, it is evident this is the same as the (n +l )th term
of the series .
090+a9a +b,a+b+c.a4b+c¢+d &e,

in which the first terms of the various orders of difference
are a,d, dg, d, &c.
Hence arbbctd. . .. =natn. —--—d,+ ":341 +

&c.
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ExameLEs.

Ex. 1. What is the sum of n terms in the series
1, 4,7, 10, &c.?

Hel'ﬂ a==l',d1=-3,d,=0,
and S-—-n+3 n il PO L ek
-_— . . 2 = 2 .
Ex. 2. What is the sum of s terms in the series
. 8,5, 7, &c.? )
Here a=1,d,=2,
and #S=n+n.",;l.2=‘n’.
Ex. 8. What is the sum of » terms of the series -
1, 29, 89, 49, &c.?
Here¢=-l,d ==3,d =2,dy=0, .
' n—1n—2 M3n n3nY-:m
= — L= + 1.
. S=ntnlz 3+,2 3.2n 5 3
n'+3n’+n_n.(n+ 1)(2n+1)
6 - 6 E

Ex. 4. What is the sum of terms of the series of cubes?
.dfia n’(n+ l)"

Ex 5. What is the sum ofthe senes 1, 2‘, 34, &ec.?
n n
Ans. + 330

Ex. 6. What is the sum of 12 terms of the series
1, 4, 8, 13,19? - .
Ans. 430.

Ex. 7. What is the sum of 10 terms of the geries
: 1, 6, 15, 36, 70, 126, &c.? )
; . JAns. 2002,
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SECTION IIL. -
On the Summation of . Infinite Series.

194. An infinite series is one the number of whose terms
is unlimited ; the law of succession being generally dis-
coverable by the examination of a few terms.

195. A converging series is one the successive terms of
which become smaller and smaller, as

Lododedodeeis

196. A diverging series is one whose successive terms
become greater and greater, as .
: 1,4,16,64....

197. An ascending series is one in which the powers of
the unknown become greater as we proceed.
Thus a, bz cx® da®, &c.,
is an ascending series.

198. A descending series has its powers dlmmmhmg as
the series proceeds: as -
b ¢ d

G o o &

199. As different series are govemed by different laws,
the method of obtaining the sum of one class will not apply
universally. A great variety of useful series may, however,
be summed by the help of the following pnnclples.

r7- q . ’ P -¢ =(1_ '
Since n. (n+p) n+p ‘n(n+4p) ( n+p)
hence, if we have a series of fra,cnons of the forn

‘ n@+m
their sum will be the pth part of the dlﬂérence between two

series of the form L and g
n+ p
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Exmrws

Ex. 1. What is the sum of the series’ 1 2 4 —

infinitun ?
Here g=Lp=1, - .

23+3A

. 1 1 1 1
- 1 1 1 1(¢0=tk -
S T 3 :
If the sum of n terms of the above series were required,

r
we would have the nth term: by — YT}
1 .
S=l+ ——oo oo n—l
T 1 - 1 fTatl
—-§— 8...-..(n+1)
QUL S
_ == arT
Ex. 2. Whatiéthe sum’of the series
- 1

13+35

Here p=2

1 14 + + +&C 1
-3 % 7 '

Ex. 8. Required the sum to 7 terms.

+57+,79 &e., tomﬁmty’!

1

Ex. 4. What is the sum of the series 1 + =— 3 5

14

&c., to infinity, and likewise to n terms?
‘ \

11
ity

.To n terms =

Ans. Sum to inf,

n. - . n n .
Snt3TenrR T Ontor
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Ex 6. Required the sum of the senes l+ + = + 10

+ ls,&c , to infinity. . o .ﬂgu.
Ex. 6. What is the sum of the series -— 8 — 4
. 8.5 87779
* .
e ll' & tomﬁmty . dAns. il§ :

Ex. 7. Required the sum of the last series to n terms.

JAns. when n is even,T;i— when n is odd.

"
12+w n+18

Ex 8. Reqnu'edthesumofthesenesr+612+g!m
— 4 &, to infinity @nd also to n terms. )
» JAns. Inof Tl
s terms ___ "
: 1R(n+1)

l 1
Ex. 9. What is the sum of the series — atsat + 8.5+

&c., ad infinitum, and also to n terms!
Ans. Ad mf 3 ton terms

12%)

'2n+3
4 2+ 1)(n+2)

Ex. 10. Required the sum of the series ll 3= % 4 —+as 31

— &¢., ad infinitum, and alsoton terms ,

l .

JAns. Ad inf. 4,tonterms4q:2——————(n+ CED)
the upper sign being used when n is even.

4
Ex. 11. Whatis the sum of the series’ 145 + 549 +513
+ &c., ad mﬁmtum' . .1m. 1

. . -
'l'=f-T-7=l_l+ 1—141, ad infinitum.
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200. H we have a series consisting of terms of the form

q
n.(n+p) (n+2p) ... . . (n+mp)’ -

they may be summed by a process precisely analogous to
that employed in last article; for we evidently have,

n('?+p)(n+?p)---(f¢+mp)_ mp gn(n+p)---(n+(m”—l)p)

_ _9 ' §
(n+p)(n+2p)...(n—mp)

Emms.

Ex. 1. Reqmred the value of
mﬁmty

123 234:"‘34:5’to
4

‘ 1 12"‘23"‘34"'&"
Heresa_

2 _4_5 <
: , 23 84 J
—l¢4 + 4+&c}=_ (ExlArt 199.)

2 l2+23

4 7
135+357+579

Ex. 2. Required the value of
&c., to infinity.

-+

0 b
Ans. o

3 9
58.11 T 61114

to infinity ? B 18

Ex. 3. What is the sum of the series

5 .
L1417 18
; o JAns 240

-+

Ex. 4. Requlredthevalueofl2J4+2345+&c ,to

lnﬁmty. ) . 1
: o Ans. s
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. 1 2 3
Ex. 5. Required the valte of 155 + 5525+ o5y
to infinity. : 1
o . Jrfa. =
@ Y& 8
Ex. 6. Required the sum of- Ts53ite345t 54506
to infinity. . 89
N ﬂm. 9_6.
CHAPTER X.

LOGARITHMS AND EXPONENTIAL EQUATIONS.

SECTION I
Logardhma

201. Evnnv number may be considered as the ‘power ofa
given root, the index of which power is called its logarithm.

Thus, a being supposed to be the fixed root, 1f a*=2b,
@ = ¢, z is the logarithm of b, and y of c.

R02. The fixed root is called the base of the system of
logarithms : and we can therefore have an infinite number
of such systems. Im practice the base is assumed 10, all
our tables of logarithms being constructed upon this assump-
tion.

If, therefore, we: assume a = 10, we have
10° =1, 10¢° =100, 10* = 1000, &c.
10-'=.1, 10— = .01, 102 = .001, &c.
Sothatthelogof 1=0, log:10=1, log 100=2, &o..
log d=—1log 01=—2,log 001 = —38, &c.

The logarithm of any number between 1 and 10 must,
therefore, be between 0 and 1. Of any numbet between 10
and 100, the logarithm must be between 1 and 2, and so on.
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208. Letmandnbeany twonnmbers,whoneloganthms
are  and ¥, so that we have
Multiplying a'*"—mn. ‘
I]BO » . a‘" =?—‘.'
n

¢
But z 4+ yand x — y are the logunthm.s of mn and —.

Hence the sum of thé logarithms of two numbera is the .
logarithm of the product; and the diffetence of the loga-
rithms is the logarithm of the quotient.

Cor. n times the logarithm of a ‘number is the logarithm
of the nth power of that namber. .

Also the nth part of the logarithm of a number is the loga--
rithm of the nth root of that number.

" 204. Let o =y, to find the value of ¥ in a series of as-
cending powers o z
Now when =0, y=1, the first term of the series
must therefore be 1.
Assume y=a'= l+A:t+B.1:’+Cz"+ &c
b Now since A, B, C, &¢., are independent of x, we shall
ave -
: y' =a"=1 + A 4 Bot + Co* 4 &e.
Also a***=1+A (z+v)+ B (x+v)*+C (z+v)°+ &c.
Now this last equation is evidently equal to the product
of the two former. Since ™+ =a"x a*." We_ therefore
h:v? b%r multiplying and developing the powers of 2 4-v in
the last,
" 14 Az4+ B4+ Cz*+4+ Dzt &e.
+ Av + 2Bxe 4 3Cz% + 4Dz®v + &c.
+ Bv*+4 8Cav® 4 6Dz 4 &e.
+. Cv*+ 4Dav* + &c. |
‘ + Dot + &c. :
-=1+Az+ Bz‘+ Caz* 4 Dzt + &e.
. 4 Av4 Awv4 ABaw4 ACz% + &c.
* . # Bv'4 ABav® 4+ Burw 4 &c.
‘ 4 - Cvr o ACTV + &e.
: "4 - Dt &e.
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If, now, we cancel the terms common to both series, we
shall have . : . .
2Bzv 4+ 3Ca%v 4+ 4Da% + &c.

+ 8Czv* + 6Da%*

4 4Drxv®
== Aty + ABz% 4+ ACa®y
+ ABazv* 4 Buw*

+ ACuzv®,

Now since z and v are entirely indepéndeut of each other;
we must have, by the principle of indeterminte coefficients,
the first lines of the above expressions equal, and therefore
‘ 2B=A* orB= %’

. ' AB _A*

.8C=AB ‘orC=T=g2—(§>

: AC A
\ & = & ‘
- As A3 Ay - -

It only remains to determine A. For this purpgse let '

1
A ®=_.
Then a%-1+l+1+L+_;l_+‘_}__+&,c =¢ 
272372347 28456 ' -

log @
Ioge’
If a be the base of the system, we will have
- . 1
. . Asma—, .
: log e
- Finally'if ¢ =e, A=1, and

Coat @ x|
e=1+z+5+55+g35 % 4)
The above is called the E:cponmtaal Theorem.
If e be the base, A ==log a,

-leog a=log e,and A =
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The logarithms to the base ¢ are called Hyperbolic or

Napcnan logarithms.
We may also detemune A by the. followmg process.

Assume a = 1 +4- b; so-that -
y=(1+by =14 2bta. 2l ta ‘”_‘1 f—”'b'+ &e.,

_1+(b_’l;+’i' _b—'+&c )a+Bet 40zt .

Consequently A—b-—'§+ 3—71 + &
_(a_l)’;("_—‘ll? ;rb_l)f'_(a_—l)_u, &e.

Comparing the above with the former value of A, we obmn

loga log(l+b) b b
loge.  loge =b— —+§—I+&c'
: whence log (1 + b) =log e(b-———+-——— +&c) (B)
"This is the loganthmxc theorem. .

- The above, whicl is taken with some modifications from
«Traité du Calc, Diff, et du Calc. Int.” by Lacrolx, though
not so short as some other demonstrations, is characterized
by its great elegance, and perfect rigour.

206. If-we make b = — b in the series (B), we have

log (1) =log ¢ (— b Y Y &) (B
whente log (l+b)—log (1-b)= log 1E5 1t
=2 loge (b+8—+— + &) ©
If now | :ib n.wehaveb=—-—_|-:—: S
ldgn=2“lbge §u+l +8(n-l-l) + 6(:;:)‘-*- % (D)
Ifaow = ne2— L

n+1 8
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1 1., 1 1 B
and log2=2logc(§-}-w+@—,+.r3—,+ &c)
Calculating the value of the above series to 9 terms, we find
the logarithm of 2 =2. log ¢ x . 846578580,
. : = log e x . 693147178,
_ and log 2% ==log8 =38Jog2 = log e X 2.078441534.
: Agtin,letna-z MZ“I‘%E%' g T

l°g4=21°g‘ go 89=+59'+&°§
log——logex 223148550,

and log lOalog(sz) =log ¢{2.079441534 223143650}

_ = log ¢'x 2.302585084,
but log 10 =1.
log e = 3 30258-5@ = 434294483 =M. .
The quantity M is the modulns of the syatem. Its vdue
to 20 places is .
43429.44819,03251 82765.

206. The series (D) converges slowly except n be small.
In the actual computation of sl; ogarithms, it xs important to
obtain the result by using very converging series. The fol-
Jawing are some of those frequently employed. -

If in (B) and (B') we make & =;T’ they become

g 241 (L SR W WA W
"8 MG r*t:p' ip*”sp* o)
p—l‘ 1 1

g == M (— s By Iy s~ %)

and since logp+l=i0g (p-i-l)—logp'thmbecmnc
g (p+ 1) =logp+ M (3— ot o —8e) (B)
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and log (p—l)=-logp M (p+ +&c)(F)

These series enable us to find the loganthm of a number
when we know that of the next greater or next less; and
they converge the more rapidly as » becomes greater.

If p == 10. weﬁnd -

l°g"‘l"'M (10 210«-'*‘310' .&°)

1
log: Q*I"M(ﬁ 210+t 310-"' &e.)

Addmg (E) and (F), and transposmg, we have

log (p+1)=2 log p— log,(P—l)—M(p L

P

~+3p+&c), e ' (Gy

‘By which the loganthm of a number becomu known, when

that of the two preceding, ones are known.
- 207. The following oonverge sull more rapldly

Pu,tp'; for n, then —+—l szp_i_lfmdeq D becomes
p+1 1

tog —_"QM(2P+1 3(2p+1)‘+_(?"1)=+ ‘)

1
or Iog(p+l)=logp+2M§2p+l+8.(2p+l)‘
1 .

*5mrm e ‘ )
Putp+l=q’thenp=q'—1=(q+1) (q—l),
and H becomes -

1°89’=1°g(9+1)+10g(q—1)+2M(29' +
1 1
sEr =Ty sEr =iy + &)
whence -
log (¢+1) =2 Jog g— log (¢—1)— 2M( 3T
+ &c.) 2= 3(2q (2)

which oonverges very ra.pldly
22+
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208. The preceding are a few of the formule which have
been invented for faci it&tmg the computation of logarithms.
They serve to show the nature of the process, and this ap-
pears to be all that is necessary, as they have little applica-
tion to the general principles of mathematics. Those which
are most referred to are collected below.

Aszs  Axs At

"=1+A’+12+123+ .234"‘&‘ m
in which A = Zg : |
¢ being determined by thé fomiula
¢-=l+l+ +23+234+&c . )
Its true value to 20 places is ’
2.71828,18284,69045,23536.
The Exponential ‘I‘heorem
e=1+z+47; "'1 23+—-§—ﬂ +&n. (3)
The Logarithmie: Theorem ) )
bbb

1°8(1+b)'=M(b -—+——-—+&c)
If ¢ be the base, or the loganthqu be hyperbolic, we

have |

. BB b,
log (1+45) =b—gt 57 +&en @)
1 b B
ond - log 1 Ey i+ 2(b+3\+3-:{-&c;) (6)
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 SECTION IL
L. Eqmlenhal Equat
209. Equatlons of the form a® = b, 2* = b, &c., i in whxch
the unknown is , are called ezponential equations.

Those of the form @ = b ‘may readily be solved by loga- ’
rithms : thus,
Taking the loganthms we have ;
z log a= log b
log b
" Joga

whence

.

210 Equations of the form z* = b-may be solved by ap-
proximation, as follows, -

First, ind by trial two values, one grenter and the other
less than z, and differing from it but little, Substitute these
values in the equation :

T zlogxm=logd

~a-nd note the results. © Then as the difference of the results

is to the difference between either result and log b, so is the
difference of the assumed numbers to a fourth term, which,
applied to the assumed number corresponding to the last-
mentioned result, will give the true value nearly. With this
value, and the nearest of the former assumed numbers, pro-
vided a.nearer number cannot be found, proceed as before,
and a number wx.ll be found dlﬂ'enng still lesa from the true

value.

Thus let
Ex. 1. =20
_Here & log x = 1.301030.

and the valua of 2 is readily found to ho between 2.5 and 3.

- Substituting these, we have .

2.5. log 2.6 = .9948500 1.4313639
8log3 =1 4318639 1.3010300

. "Wféﬁ - 1303339
And as ’ .4365139 .1303339 :: .5 .149,
o 8—.149 =2851is the value of 2 nearly.
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Ex. 2. Let 2* =5, to find 2. ° N .dna. 2.1293.

Ex. 8. Let 2* == 2000, toﬁndthe value of 2.
.. JAns. 4.8278226.

"CHAPTER XI.
‘211. LeT P represent the pnnclpa.l, R the rate per cent.,
¢ the time m years, I the interest, and A the amount.

Then we will lmve R =r for the interest of 1 dollar for

100
1 year. Consequently the interest for 1 yea.r is Pr. .
. Prt = I
and A P+Prt=P(l+rt) =A. .

As, however, the student has become famﬂlar with all the
rules of Simple Interest, while studying arithmetic, it is un-
necessary to develope the matter any further bere, we shall
therefore proceed at once to

COMPOUND INTEREST.

212. When the interest as it becomes due is taken to
augment the principal, on which the interest for the next
period is to be calculated, then the whole increase of the
debt is called Compound Interest.

213. An .ﬂrmuity is a yearly income.

214. The present valué of any anmnty is the sum which
‘being: put to compourd interest will pay the amount of the )
* annuity at the time it becomes due.

215. Since r is the interest of $1 for 1 year, 1 4 r must
be the amount of $1 for the same time.

If, then, P dollars be put out on compound mterest, it wils
amount in one year to .

P.(1+47).

(TS
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- Mow this being the principal for the next year, the amount

will be
P. (l+r)(1+r)=P(l+r)’

Pursumg this investigation we shall’ ﬁnd that the amount
at the end of £ years is P (1 4 7). -

Or A=P(I4r. . '
e .. logA= log P + ¢ log (l+r), (D)
' “log A — log P . "oy
] t= log (l +r) "’ )
log P= log At log (l + 7). ®3)

216. I the interest be payable half y'earl or quarterly,
# must be taken for the interest of 81 for the half or quarter
of’a year, and t the number, of tbe penods in the given time.

Exmpms :

Ex. 1. What is ‘the amount of 50 dollars for 20. years, at
6 per cent,. compound interest.

Here ‘P = 50.r==06,and‘t=20.'

Consequently we have - R
log (1 + r) = .0253059

.
'tlog-ga{-r) 5061180
fog 1.6089700 -
log A 2.2050880 . -

.~ A=$160.36.

Ex. 2. What sum will amount to $1000'in 30 years, at
6 per cent. compound mterest

. Here log(l+r)==106= 0253059

. ¥EgITTa
. la.gAlooo . =8.0000000
"lgP | 22408230

N P—017411. B o
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Ex. 8. In what time will $100, or any other sum, double
itself at 6 per cent. compound interest ?

Here A = 200,
log A —logP -
and =)

log A = l 3010300
logA—log P~ "3010300 . . log — 1.4786098
_ log (14r) 0253069 log — 2.4032218
lott1189yeara' 1.0753880.

217. In finding the amount of an annuity -for a given
number of years, we must recollect that the first payment
will be at interest for ¢ —1 years, the second for £ — 2 years,
and so on. The whole amount will therefore be, the annuity
being a,

A= a,((1+r)‘—'+(l+r)‘—' e 1)
af{(l+r)—1
S

If p be the present worth of the anmnty, Wwe must have
the amount of p dollars for ¢ years, equal to'A.

or p(l4r)= “_____{(l +r) =D
_ §1_~(1+i)‘§~_
r

If ¢ be infinite ~——c (l+ aEyp=0in which case p =—‘;‘
but this is evndently the sum which will produce the a.nnual
interest a. : ,

‘Whence

(8)

Emrx.ns

Ex. 1. In what time will $500 amount to 0900 at b per
cent. compound interest? - . Jns. 12.04 years.

Ex. 2. What is the amount of an annuit of: 300, fore-
borne for 16 years, at 44 per cent. compound interest ?
JAns. $6816.807.
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* Ex. 8. What sum will yield an annual income of $630,
interest being reckoned at 43 per cent.?  /ns. $14000.

Ex. 4. What is the amount of an annuity of $700 per
annum, which has been foreborne 12 years, interest being
at 5-per cent.? : : JAns. $11141.89.

~ CHAPTER XII
' INDETERMINATE ANALYSIS.

218. It has been shown (Art. l‘wk that whenever the
number of independent equations is less than the number
of unknown quantities, the question admits of an infinite
number of answers.. It is-not unfrequeutly the case, how-
ever, that some conditions exist which partially limit the .
number of results. For instance, if from the nature of the
?uestion the solution is limited to positive integers, there is
requently only a single result that will apply.

Problems of this kind are called indeferminate problems.
The results are generally required in positive integers.

219. If a and b be prime to each other, then will the re-
mainders arising from dividing mb .l;y a, be different for
all values of m less than a. For let, if possible,

. mb=ra +¢ '

and : m'b =ra-+c
m and m’ being less than a.

From these equations we have

b _r—r .
: S a m—m"’ :

which is manifestly impossible, since m—m’ is less than
and by hypothesis - cannot be reduced to lower terms,

220, If @ and b be prime to each other, the equation
az — v:fl = =1 is always ible. - That is, positive inte-
gral values of z and y may be found, which will satisfy it.
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For we will evideatly have
X = by + Io
a

Now, since a and b are prime to each other, the mﬁdeu
arising from dividing mb by a will be different, for all values
of m less than a; .one of these remainders must there-
fore be a — 1; so0 that we shall have
b =pa+a—1

mb+1l=pata=(p+1)a
Conse% ently, if y =m, x=p 41, and these being inte-
gers, the equanon ar —by=1is poss:bl‘e
Changing sxgns, we have by—-— .= 1, and this-is endemly
- possible.

22% If @ and b are pnme to eueh other, the eqmmon
ax — by =c admits of an mﬁmte number of posmve inte-
gral solutions. - : ,

For sin¢e ~ by = 1is possible,
. A oa:” bey’ = ¢ is always possible.

And putting ¢z’ =2z and ¢y =y, tlns becomes

ez —by=c¢, - '
which is therefore always  possible. .

Let now z = 2 y =q be one solution, .

then will # = =p+ mb, y = g + ma satisfy the equation,
whatever value.is assxgne& to m. For we will have

" ax = ap + mab, by = bg + mad,
ar — by—ap bq=c

Cor. If aand & be not prime to. each other, the equation
ax — by = ¢ is impossible in integers, ¢ being sipposed to
have no common measure with both a and b.

For if a and b have a common measure which is not
divisible into ¢, one member of the equation will be dmubh
by a number which w:ll not dmde the dther, whlch is mani-
festly absurd.

222 To ﬁnd _positive mteger values of the equauon
ar = by =¢, .
asnd b bemg primhe to each other.
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s N .

. by+c. . . .

Since £ = -=—— is an integer, if the operation be actu-
a g P

ally performed the remainder b’y 4 ¢’ must necessarily be
divisible by a 5 80 that we shall have

by+c'

equal to an integer, b’ and ¢’ bemg less than a. I now we.
take the dlﬁ'erence between Y-and that multiple of by + ¢

in which pby may be nearest to ay, we shall have a re-.
mainder ‘

b"y + c”
. ) P e
in which " <&'. By continuing this process, we shall
finally arrive at a remainder of the form

y+p
. a ’A .
If we put this equal to r, we shall have-
' y+p=iar’
and o Yy=ar—p.
To illustrate the above, let the ‘equation be
11z— 25y = 60.
Wy +60 3y+6
Here E=— = .2y+5+-—‘—l—1,—=anlnt.
. 12y+20 11y y 420 )
o Y 1 11 .=.Int.=p,
and , y=1lp— 20,
r=2p — 40,

in which p may be any number greater than 1.

Now, as this operation does not alter the denominator of
the fraction, it is evident the numerator alone need be writ-
ten ; by this means the operation w;ll be rendered more con-
cise. Thus,

25y+ 3y+5

z=

=2y4 64 L~
23
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3y+56
12y +20 .
11y 422 ' :
V=2 epy=11p+2
z=2%p + 10.
the least values being 2 and 10.
" Had we subtracted 11 y instead of 11y 4 22, we should

have arrived at a tesult agreemg in form with’ that obtained
by the other method. | ,

Ex 2. vaen9:t+ 18y=2000

Here ;¢=——_200[);-13"!=222—2.y+
' CBy+2

10y +4

oy
y+4

_._=p

9

by+2
9

y=9p —4 '
' x=228—18p. .
B gmng to p dlﬂ'erent values, we derive the following
Tes ts,nz.
p=1 2 8 4 5 6 7 8
r =216 202 189 176 163 150 137 124
y—§l42¢33241505968

p= 91011 12 13 14 15 16 17
z=1119885 72 59 46 83 20 7
y= 7786 95 104 113 122 131 140 149.

From these re:ults, as well as the general values of z and
y, we infer that the values of z must vary by the coefficient
of y, and those of y by that of x. .

Ex. 8. Requlred all the possible values of z and y in the
equation ‘1I'z + By =2564.
Ans, r=19, 14,9, 4,
y = 9, 20, 31, 42.
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Ex. 4. A gemleman having a debt of $75.58 to pay, finds
he has nothing but half dollar pieces to pay it with. The-
creditor having nothing but five franc pleces. how will they
manage to setﬁe the debt ; the five franc piece being reck-
oned at 83 cents ?

Ans. He will give 233 half dollars, and receive 44
five franc pieces.

Ex 6. Given llm+35y=500,to ﬁnd the values of =
and y. Ans. =20,
N N . . y=8

Ex. 6. A drover bought ‘steers for 35 dollars per head,
and cows for $26. How many of each could he pnmhase
for $1000? Ans. 10- steers énd 25 cows.

Ex. 7. Given 7x 4+ 13y—7l, to ﬁnd the values of x
and y. Ans. Impossxble ’

Ex. 8. Given l7z+33y-881 to find the values of z -
and y. Ans. z =12, 465,
. . L ) y=19,2

223. To find the number of solutions of which the equa-
tion : - ax + Yy ==¢ -~
will admit, '

Find values of z’ and g/, whxch will satisfy the equatmn
. oz — by’ =
acx’ — bey' = c.
Jbut ’ oz + by ==¢, .
az + by = acx’ — bey’, .
hence - z = ¢x’ — mb,

L Yy=ma—cy' .

The number of solutions will therefore be the same as the
.number of values that can be a.sslgned to m.

Now it is ‘evident that m < - and m > cy

The number of values of m wlll therefore,correspond
with the difference between the integral patts of the fractions
@ g
ped g



268 INDETERMINATE ANALYSIS.

.except when '% is a whole number. In this case, since

m < c:l , we must consider g a fraction, and re_]ect it. If,

however, we intend to include 0 amon eg the mtegm! values,
this last precaution need not be observ

Emnns

Ex. 1. Determme the number of solutxons the -equation
lz+456y=254
admits of.
Here the least values of 2’ and y’ in the equation
. lz—5y =1 -
are =1,y =2

® . —~=———=m-—-,

o . b B )

IS WS TN
and - B0 —46=41is the number of salutions.
Ex. 2. What ig-the number of mtcger values of z and y,
that will satisfy the equation
Rlz24+b6y= 20000? Ans. 190.

Ex. 3. In how many ways can £1053 be paid in gumeas
and moidores; the guinea bemg 21s., and the moidore 27s.1

JAns. 111 ways.

Ex. 4. 'Ret}ulred the number of i integer values of z and Yy
that will satisfy the equation
17 z + 13 y = 6000. Ans. 36.

. 224. To ﬁnd the integer values of x, Y and z, m the
equauon
az + by + cz =d.
If ¢ be the greatest coefficient, then, since the values of
and y cannot be less than 1, the g'reatest value of 2 cannot
d—a—b

exceed

Now, since = z == —F =,
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4f we apply to this value the same principles that were em-
ployed 1n Art. 222, we shall arrive at a result of the form ‘

- Y+mz+ p "

J a ) -
. . d—a—b_. -
in which z may have all values, from 1 to — 1 inclu-
_ mve, provided those values give posmve mtegml values o x
andy. -
ExampLzs. .

Ex. 1. Given l7z+ 19y+2l z=400 to find the in-

tegral values of x, y, and z.

=17+Q

Here the limit of z is ;“L’:%;i"
: 400 — 19y — 21z ) ., 9—%y—4z
also z=+=%—y—z++
92y —4z S
72— 16y—32z
—68417y+384z
y+2z +4
.- T A
“Whence y=1Tp—-22—4,
and e=—19p+2+4+28.

If, now, we give. to z the several values, commencing at 1,
we shall arrive at the following results, viz.:

z 12 8465 611121314 -
yll 9753818648
2101112131416 1 2 3 4.

The remaining values of 2 make the results impossible.

Ex. 2. Given 1224 17y + 19 2 = 6100, to find the
values of z, y, and 2. :

9, 21, 83....224 .
""‘"""“{z=494 477,460.... .1 . §3°“‘1““'
=10, 22, - 846
- =23 ol 18 }99“‘1“”'
: =11, 2 ...... 847
Rt E - S ;”‘f“‘?"f
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By thus proceeding, substituting. 4, 5, &c., for z, the
number of values would be found to be 4762. - As this me-
thod, however, is very tedious, we shall, after appending a
few more examples for exercise, proceed to explain a more
concise method of determining the number of solutions.

-Ex, 8. How many gallons at 12 cts., 15 cts., and 18 cts.,
must be mixed to compose 300 gallons at 17 cts. per gallon.*
Ans. 12cts. 1, 2, 8, &c.....to49,
16 cts.. 98, 96, 94,&c.....10Q,
18 cts. 201, 202, 203, &ec. . ... to 249,

Ex. 4. Given 142 4 19y + 21 g =252, to find the va-
lues of «, y, and 2. : o .
Ans. 2=1, 4,1,
cy=7171,

- z=1,3, 5.

In this example the values of y are seen to be seven. It
might easily have been inferred,a priori, that they must be
7, or one of its multiples ; -for since every term of the equa-
tion except the second is divisible -by 7, this must be so
likewise, but 19 and 7 are prime to each other. . Therefore
4 must be a multiple of 7.

Ex. 6. Given 13z +4 15 y 4 17 2= 181, to find the va-
lues of x, y, and z. :
dns. =1,8,9,

y=l,4,2,
. z2=9,1,2.
Ex. 6. Given 112 4 16y + 17z = 400.

‘dns.z=| 112|814 (66 |7 (8
'z = |13.28] 6.21|14.29| 7.22|15 8.23| 1.16| 9
y = |16.6 [20.9 |13.2 [17.6 |10]14.3 [18.7 |11

z=| 9 |10] 11 [121814]15/17|22

z=1 2.1710{ 3.18(11/4 (12|56 |1

y=|154 | 8]12.1 | 59| 2/6{8|1

In all, twenty-five different results.

* Tn this case there will be two.'equa.tions; by the elimination of one
of the unknowns we will therefore arrive at an indeterminate containing
but two unknown quantities, which may. be solved by the p
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225. In ‘order to determine the number of solutions of
which the equation az + by 4 ¢z = d admits, we must first
render two at least of the coefficients prime to each other.

- This is readily done, as may be seen by the following
example. . P C

Let 9z 4+ 12y + 162z =424.

Transposing 16 z, and.dividing by 3, we have
3~z+4y=141-'5z4;1;—’.

11—z, L
.. —— is a whole number, .

3
83z 2—2%z_z+42

and 3 +———8 =—3
Whence z2=8v—2.

Consequently we have
82+4y=141—15v+10+1—v=1562— 16 v,
and 8z4+4y+16v=152 N ’
Since the values of x and y are not altered by the pre-

ceding transformation, the number of solutions will be the
same as before. b

Having prepared the equﬁtion as above, let a and b be
the coefficients which are prime to each other, then we shall
have A .

= a whole number = v.

az +by=d— cz,
in which z can have a!iy‘value_ from 1 to w, so that

2, being the greatest intégéi' in the fraction g;:—_b » W
shall have 2, equations ‘
ar 4+ by =d—2¢

ax +by=d—z,c
Baut by (Art. 228,) the number of solutions of which the
equation ax + by = ¢ admits, is equal to the difference be-

% and _—ct':—/ . The number of so-

lutions in the above equations will therefore be,

tween the integral parts of



272 INDETERMINATE ANALYSIS.

. ' Ad — — 4
ax4-by=d— c,diff.of the int.parts of “ 3 c)z:':nd(d ac)y

m ax";b.'/"d—ch “ .u> (d’f‘:)zla.nd(d_:c)y’

az4-by=d—3c « “ '(d—%c)z' and (d,—fc)y’
& &,

Now, to bbtaip the.-whole number of solutions we must add
the numbers of which the various equations above admit.
This is most conveniently done by obtaining the sum of the
integral parts in the arithmetical series ' .

(d—ec)x (d—2c)x' (d—3c)x
b b ’ b

and subtracting therefrom the sum of the,iuteéral parts of
the series -

=9y @d—20y" (A=W ., terms.
. a a. b ‘.

,t0 . . .z, terms,

To obtain the sum of the integral parts of the above series,
“first obtain the sum of the whole series and then deduct the
sum of the fractional parts. Since these necessarily return
in periods, it will only be necessary to calculate the sum of
.one period and multiply that sum hy the number of periods,
taking care to add the odd terms, should there not be an
exact number of {)erioda. These terms will evidently- cor-
respond with the leading terms .in the §er_igs, It must also
be remembered that % is to be considered a fraction in the
 first series.. ' '
ExamrLEs.
Ex. 1. Required the number of solutions the equation
11z 416y + 17 2 =400
' ’ 400 —11 —15
17
Also the least values of 2’ and y’ in the equation
11’ —16y' =1,are &’ a=11y'm= 8.

vadmits of.

Here the-superior limit of z is =22
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The above series are therefore
383.11 = 366.11 26.11
Bt Bt
8838 = 366.8 2.8
and It ot
the common differences being

1711 = 12115, and AL = 12-‘-1—

15 11 1’
and the number of terms 22.
Now the sums of the series are 44(::'11 == 3299 14—5,
and ‘ ,43%8-_ = 3272.

Again, the fractions in the first series are
13 6 147 15 8 1 9 2 103 11 4 12 5

. 4 .
whose sum is l?ﬁ' - L )
The fractions in the latter series are
6 2 9.6 18 4 0 7 810

this period being repeﬁted twice, hence the sum is
s 28=10. '
Hence the sum of the integral parts in the first series is
4 4 '
82991—5 — 121—5 = 3287,
and in the second ‘
8272 — 10 = 3262,
the difference between which is 25, the number of solutions
as in Ex. 6, Art. 224.

Ex. 2. Given 12 2+ 17y + 19 z = 6100, to determine
_ the number of solutions, : g Ans. 4762.
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Ex. 8. Required the number of -solutions the equation
17 z 4 21 y + 80 2 = 3000, admits of. Ans. 406.

Ex. 4. Required the number of solutions the equation
14242y + 31 z == 20428, admif.a of. JAns. 32100.

Ex. 5. Given 8247y + 11z =86412, to determine
the number qf solutions. © Jns. 16168483.

226. To determine a number, which, divided by certain
numbers, shall leave given remainders.
Let N be the number, d, d’, d’’, &c., the divisors, and
r, ', ", &c., the remainders.
Then we shau have
N =dq + r=d:q1+ rl = dllqu_,_ rll'
o dg—dg=r—r.

« Let the least values of ¢ and ¢’ be found in this equation,
then the least number N’ which will satisfy the first two
conditions is dg + r, or d'q’+ r’, g and ¢’ ‘having their least
values. Also every other number that will satisfy these two
conditions is included in the formula -

dd'z + N'.
Consequently we will have
dd'z + N =d'q"+ 1"y
If in this equation we determine the least value of z, the *
number N corresponding to it will satisfy the first three

conditions. Every other number that will satisfy these
conditions is included in the formula

ddldllz + NII. ;
We may thus ]Frooeed until we shall have obtained a
number which will satisfy all the conditions. ‘ :

© ExAMPLES.

Ex. 1. To find a number, which, being divided by 3,7,
and 11, will leave the remainders 2, 5, and 7. ,

The required number must be of the forms
8242 7y+5adllz 47
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.- 824+ 2=Ty+b 0082 —Tyms.
The least values of z and y that satisfy this equation are
r=8, y=3,
o® 8z + 2=26
is the least number that will fulfil the first two conditions.
Also every number of the form
- 21z 4 26,

will equally fulfil them. We must therefore have
Az +2W=112z47,

or 11z—21z=19.
‘Whence - 2=8,2=17, .
and : 112 47=194,

is the least number that will fulfil the conditions.
Every other answer must be of the form
3x7x11z4 194=231z 4 194.

Ex. 2. Find the least number, which, being divided by
8, 4, 5, 6,and 7, shall leave the remainders 2, 3, 4, 5, and 6.

‘We shall solve this equation by a different pracess. Thus,
if  represents the number, the expressions
r—22—8 x—4 x—=
8’ 4 5’ 6
must be whole numbers.
If, then, we make the first equal to p, we shall have
= ? P+2 . ’
Substituting this in the second, we have
8p—1
4 ’

5,and $°7—6'

an integer. ) g ) ]
- Whence ip_3r— . s

1 "2 ~— 1 ~=¢?
and p= 4q—1.
‘Whence C z=12q—1.
Substituting this in the 3d fraction, it becomes
129 -6 .

6
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Now since this must be an integer, we shall have

g=>5r, : :
and z=60r—1.
Consequently ?—%—5 = 6%’ =10r—1,

which introduces no new conditions. This might have
been shown & priori; the fourth condition necessarily re-
sulting from the 1st and 2d. .

The 6fth fraction 9 becomes g’%ﬂ=8r—l+¥.
Whence r="7s B '
and r=420s8 —1,

in which s may be any number, from 1 upward.

If 8 =1, x =419, the least number that will answer the
conditions.

Ex. 8. Required the least number, which, divided by 2,
8, 5, and 7, will leave remainders 1, 2, 4, and 5, but divided
by 11 will leave no remainder. ' Ans. 2189.

Ex. 4. A man has some eggs, which, when counted by
twos, threes, fours, fives, or sixes, still leaves one, but when
counted by sevens there are none.left. What is the
number? Ans.. The least number is 301.

Ex. 5. Required the year of the Christian era, in which
the solar cycle was 6, the golden number 3,-and the indic-
tion 3.* , Jns. 1845.

* The solar cycle is a period of 28 years, at the expiration of which
the days of the week return to the same days of the month, provided a
common centurial year has not intervened. The first year of the Chris-
tian era being_ the 10th of the cycle, we must add 9 to the nymber of the
yelar and ldivxde the sum by 28, the remainder will be the number of the
solar cycle. .

The’iumr cycle is a geriod of 19 years, after which eclipses return in
the same order. The first year of our era being the second of this pe
riod, we must add 1 to the year, and divide by 19, the remainder is the
year of the lunar cycle. This is the golden number.

The Roman indiction is not astronomic.. It is a period of 15 years;
the first of the Christian era, being the fourth of the indiction. There-
fore add 3, divide by 15, and the remainder is the indiction.

In the above example we must have

z2+9—6 z41—3 A
.28 ' 19 15’

whole numbers.
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Ex 6. What is the least whole number, whith, being
divided by 12 and 17, shall leave the remaindez 9and 71
ns. 177.

' CHAPTER XIIL
DIOPHANTINE ANALYSIS.

227. IN many investigations, particularly in the higher
mathematics, it becomes necessary to find values which will
render irrational expressions rational. The mode of doing
this, where it is possible, forms the subject of the Diophan-
tine Analysis. '

The first principles of that analysis are sufficiently simple.
Some of its applications, however, have presented difficul-
ties, the solution of which has been deemed worthy the
efforts of the. greatest mathematicians of the last century ;
and it is to two of the most illustrious of these, Euler and
Lagrdnge, that we are indebted for most that has appeared
upon the subject. The former devoted much time to the
subject, and produced some investigations of the more
difficult problems, which may be considered as analytical
gems, well worthy of study from their beauty. :

It will be impossible, in an elementary work like the pre-
sent, to give any thing beyond the general lprinciples of the
science ; we trust, however, that nothing will be omitted that
will be found necessary in preparing the.pupil for the study
of the higher mathematics. Those who wish to pursue the
matter further, cannot do better than to study * Barlow’s
Theory of Numbers,” an admirable synopsis of the subjects
upon which it treats, or “ Legendre Theorie des Nombres,”
where he will find the whole subject developed by a master
hand. :
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" BECTION I -
On the Resolution of Exzpressions of the form
Ve fbz e "

. .
228. Let a = o, and the expression becomes

Vbx +¢.
If we put this equal to p, we shall have
bz +c= p',
—c
b ?
in which any value whatever may be given to p.

ExaMpLEs.

Ex. 1. Let it be required to find a number, such that if it
be multiplied by 7, and the product be increased by 10, the
result may be a square.

and X =

The equation to which this question leads, is evidently
Tz “+ 10 =p‘,
p— 10
T
in which if we assume p =4 ; m=;; the other values of

whence X =

p will produce different results.

Ex. 2. Find values that will render v/ 11 z — .10 rational.
14 19
‘ dns. z =1, i &c.

Ex. 3. Render the expression v/8 z + 17 rational.
8 19 32 _

Ans. xﬂﬁ-, —é—, 'g, o
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229. Let the expression be of the form

vazr® + bz.
Assume _ v az® + bz =pz,
then ax® + bz = p*x*,
and T p-'{-_;z' where p may be assumed at plea-
sure.

m .. . n%

pr-;. this will become T =
ExamrrLes,

Ex. 1. To find values of 2 which will make 52*4+8za
uare.

ere GamB, b=,
L8
_#—5.
In which ifp=8,z-%.

Ex. 2. To find a value of z that will make 7 2* — 15 2
a square.

Here Py p— 15 16

=TT
Ifp =‘2, =B,

Ex. 8. Required a value of « that will render v/ 12297z
rational. o .

Ex. 4. To find a number, such that if its square be divided
by 12, and the result added to ;—the number itself, the result

may be a square.
Ex. 5. Render V8 2% — 17 # rational.

230. Let the expression be of the form
V&' + bx + ¢,
in whicl the first term is a square.
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Assume vVazr* 4+ bx +c=az+p.

‘Then &z + bz + ¢ = &*2* + 2 apz+-p*
pr—c
whence zab__zap.
m m* — en?
UP-;’szFT'

Ex. 1. Find such a value of z as will make (z+43)(z—4)
a square,
Here (z+3)Ez—H=2—2—12

consequently z-%x(ifp——l) 13.

Ex. 2.Finda value of z which will render v" 4z‘+ 17z 48
rational.
JAns. 8, —, &ec.

Ex. 8. Find a value of z which will renderv'922—272+42
rational. 2
ﬂlll. = 7§.

Ex. 4. Render 16 2* — 86 z — 7 rational.
JAns.

231. Let ¢ be a square, or the formula be of the form
Vaz‘+bz+
Here we may assume
s/az‘+ba:+c'=pz+c,
whence az® + bz + ¢ = p*x* 4 2 pex 4 ¢4,
2pc-—-b
and
a—p

Ex. 1. Find a value of 2 that will render v 222—27z+9

rational.

1
Ans. 3, @,&c

Ex. 2. Render v'16 — 35 z — 7 2* rational.
Ans
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Ex. 8. Render V82 + 17 z + 4 rational.
JAns.

232. General solution.
Let m and n be the roots of the equation

2422450,
so that we shall have
ar*+bx 4 c=a (x —m) (x —n).
Assume A Vazr* + bz + c=p(z—n),

and we obtain
az® + bz + ¢ = p* (x— n)*,
o @ (z —m) = p*(z — n),
—rn
and T= a—p

Now the roots of 5
. ) ¢ _

| Btz =0,

—b +~/b"—4ac.nd e -_b— \(b’—4ac.

. 2a 2a

In order to render these expressions rational, §* — 4 g¢ must

be a square. If we put it equal to d*% we will have

d—b d —b—d
m=gs wdn=—gg—

are Ir==

233. We may separate the expression
axd4bx 4 ¢

into two factors, when 5* — 4 ac is a square, by the following
simple process. '

Assume  az*+ bz + ¢ = (pz + q) (fz + 8)
=pfe +(pg + /1) = + 8¢,
consequently pf=a, pg +fg=> and gg=c.

Squaring the second, subtracting four times the product of
the first and third, and extracting the square root, we obtaiz

A= R
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. ~ b4d
e =————2p'
b—d
md q=—_2_f—.
Ex. 1. Required a value of 2 which shall render
VIbr + 22z +7
rational.
Here the factors of 15 are 5 and 8 ; let therefore
Also d=vVb_%ac=8.
b+d 2248
Henoe} =—§p—--T=8,
b—d 22—8 7
and =

7
l5z‘+22:c+7=-(5z+§)(3x+3).

7T m
Let now 5z+§=—r§(8z+3), (1
and we shall have ‘
Visz + 22z +7 =g(8.z'+8),

a rational quantity.
But, from (1) we have

15n%2 4+ Tn* =9 m%c 4 9m?*,
. z = Oms—Tn?
o 16— 9m*

in which m and n may be taken of any values that will
render numerator and denominator of the same sign.

If me=1andn=1, z—sl.

13

16°

If m=6, andn=5, za&

= B
&c.

I m=05 andn=4, r=



e — e ——-

rational.
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234. It sometimes happens that an expression of the form
ax®+ bx + ¢

may be separated into two parts, one of which is a square,

dy the tg er the product of two factors, so that we will have

ax® + bx + ¢ = (mz 4+ n)* + (px + f)(qx + 8).

In such cases the value of = may be found by the follow-
ing process:

Put Vaz*+ bz + c=mz +n+ d(gz + 8).

Consequently o
(p2+f) (g2 + g) =2d (mz + n) (¢= + g) + (9= + g)*
. pr+f=2d(mz+n) 4+ d(gz+g),
that is px + f =2 dmz + 2 dn + d°qx + d'g,
_2dntdg—f d(2n+dg)—f
p—2dm—d’q S p—d(@m+dg)

and

. - ExAMPLES.

Ex. 1. Find such a value of x as will make
Vies+19z+ 10

Here we have .

7224192 4+10=42*4+8x+44+8224 11246
=(22+2)'+ (8 +2) (x +8),

em=2 n=2, p=38, f=2 ¢q=1,g=3,

d4+38d)—-2

8—d@A+dy

fd=—2 « =§, and any other value may be given to

.. we shall have ==

d, which will not make z negative.
Ex. 2. Find such a value of z as shall make

23 4-8x+7
a square. JAns. 2 =38.
Ex. 3. Find a value of 2, which will make
1524+ 13246

a square.

285. The above are the only cases of which a general
solution has been given. Many expressions, however, occur
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which do not fall under either of these forms, and yet admit
of rational values ; to determine these it is necessary in every
case to find by trial one value; we may then determine
othems by the following method.
Let 2 == r be one value that will render the expression
vVar* 4+ bx+4c
rational, and equal to p.
By (Art. 143,) ransform the equation
ar*+bz4ec=0
into one, whose roots shali be 2z —~r. The transformed
equation will be of the ferm
find ay’+b’y+’f=(:nk
and if we find a value 7', which will e this polynomial
a square, we shall kave a value
rz=r+47,
which will in like manner render the original expression

rational.
ExaunrLEs.
Ex. 1. Required values of z which will make
V72452411
rational.

A few trials will determine one value to be 2; put, then,
z=y+2
and we shall have ¥
T224+5z4+11=7y"433y +49.
Assume 7 1433 y+49 = (py+7) = py*+14 py 449,
and 7y+33 =piy+14p.
14p—33
‘Whence Y= T
From the form of the above we can obtain no positive va-

1

lneofy. If p=2, y=—g,andz=§.

And other valaes may be found by giving fractional va-
lues to p.
Ex. 2. Required values of x that will make
V3rii Tz 46
tutional, 2 = 1 being one value. JSns.
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SECTION II
On Ezpressions of the Form
Vax® + bas + cx + d.

236. The determination of the values of z, that will ren-
der the expression
Var* + bzt 4 cx +d
rational, presents difficulties which have only been overcome
in a general manner in two cases, viz., when the last two
terms are absent, and when d is a square.

237. Let the expression be
vaz® + bzs.
Assume . Var + bz = pa,
az® + b2t = pias,
p-b

and T = .
ExAMPLES.
Ex. 1. Find «, so that 8 2® 4 7 z* may be a square.
JAns., x=38.
Ex. 2. Find 2, so that 3 z* — 6 2* may be a square.

288. If the expression be of the form
vVaz®* + ba® + cx + d°.
Assume ax® 4+ bx® + cx + d¥ = (mx + d)?
= m*z® + 2 mdz + d*

¢
Ifnowwemake2md=c,orm=2_3,

we shall have az'+b:c.‘=m':¢"=£-’d—,z’.
¢ — 4 bd*

‘Whence z = "
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Bince this contains no arbitrary quantity, it gives, of course,
but one solution ; others may, however, be found by the next
article.

Ex. 1. Render v8 2 — 6 2* 4+ 6 z 4+ 4 rational.

20
Ans. z = =

Ex. 2. Render V7 a® — 8 2* — 4 = + 16 rational.
Ans. ¢ =

239. One value p being given, which will render the ex-
Ppression

Var* +bx'+cx+d
rational ; others may be determined as follows.
Let ap® + bp* + cp + d =m,
Transform the equation (Art. 143)
ax®+bx* 4 cx 4+ d=0,
into another whose roots shall be z — p.
The transformed’equation will be of the form
ayP+b y' +cy+m=0.
We may by last article find a value of y = ¢ which will

make this polynomial a square. Then z=p 4y wil
render the former a square.

ExampLES.

Ex. 1. 2=2 renders v/z® — 2% + 2 x + 1 rational ; find
another value of & that will answer.

.dna._ L= — i—;
Ex. 2. Find a value of @ that will render v'z* + 3 ra-
tional besides z = 1. Ans. z = 23

1_60
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SECTION IIL.
On the Resolution of Expressions of the Form
Vazt 4 bx® + cx® + dx + e.

240. To find values of 2 that will make

Vo + b  ferPfdx e
rational ; assume
art+-brd+cxt4-dzf-e= (a.‘c’+m.1.' + n)‘
=g'rs -+ 2amzd 4 (2an +m9) 20+ 2mnz +-n*

Now,ifwemake2am=borm=2—ba,

c—m* 4ac—-0
and 2an+mP=corn= 5 = §a
we shall have

dr 4+ e=2mnx 4 n% whence z=

nt—e
d—2mn'

ExampLES.
Ex. 1. Required a value of x that will make x*—38 242

& square. Ans. z = g

Ex. 2. Render 4 24 4 4 2® + 4 2% 4 2 x — 6 rational.
ans, = 13%.
241. If the expression be of the form
Vazt + ba® + ca® + dx + ¢,

it may be solved by making 2 = -;—, which reduces it to the

form J(a+by+cy’+dy°+e‘y‘)
y

the numerator of which may be rendered rational by the for-
mule of last article.

Ex. 1. Find a value of & that will make v/Z #—3° 1
rational,

38
JAns, P
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Ex. 2. Find such a value of z as will make 22 z*—40z*

— 40z° 4 64x + 16 a square. Ans _8_
. 7 .

242, When the first and last terms are squares, or the

expression is of the form
vVaizt 4 bax® + cx® + dx + ¢,

we may proceed as in the preceding cases.

Or assume
a’z* + ba® + cx* + dz + ¢ = (ax* + mz + €)*

= a’%z* + 2 amaz® + (2 ae 4 m*)x'4-2mex+-es.

This may be solved either by making the second or the

fourth terms equivalent.

Thus if 2am = b orm=—b—,

2a
cx* + dz = (2 ae + m%)z® 4 2 mez,
eme—d
whence x

Se=(Rae+ my
If2me=-dorm-i.

e
we shall have
ba® 4 c2* = 2 am2® 4 (Rae + m9)a*
(Rae +m*) — ¢
and T —

248. When the expression does not come under either
of the preceding cases, no general solution can be given
until one value has been found by trial. When such a
value has been determined, the process employed in Articles
235 and 239 will generally lead to other values.

No method has been discovered for rendering rational an
expression in which the unknown exceeds the %)urth power
—not even when one value has been found by trial.

Those who would desire to pursue this subject further,
may consult «Euler's Algebra,” « Barlow’s Theory of
Numbers,” or % Legendre Théorie des Nombres,” where
will be found most that has been written upon this subject.

THE END.







